PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MHD free convection-radiation interaction in a porous medium - part II: soret/dufour effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is focused on the study of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium by taking into account of the Soret/Dufour effects. The boundary layer equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters, namely the buoyancy ratio parameter, Prandtl number, Forchheimer number, magnetohydrodynamic body force parameter, Soret and Dufour numbers. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. Increasing the Forchheimer inertial drag parameter reduces velocity but elevates temperature and concentration. Increasing the Soret number and simultaneously reducing the Dufour number greatly boosts the local heat transfer rate at the cylinder surface. A comparative study of the previously published and present results in a limiting sense is made and an excellent agreement is found between the results.
Rocznik
Strony
157--175
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mathematics Motilal Nehru National Institute of Technology Allahabad Prayagraj- 211004, INDIA
  • Department of Mechanical Engineering Cleveland State University Ohio, 44115, USA
  • Department of Mathematics, Indian Institute of Technology Kharagpur- 721 302, INDIA
autor
  • Department of Mathematics Madanapalle Institute of Technology and Science Madanapalle-517325, INDIA
autor
  • Solid Mechanics, Spray Research Group, School of Computing Science and Engineering, University of Salford, Newton Building Manchester, M5 4WT, UK
autor
  • Department of Mathematics COMSATS Institute of Information Technology Attock, PAKISTAN
Bibliografia
  • [1] Escobar F.H. and Civan F. (1996): Quadrature solution for foam flow in porous media. − J. Petroleum Science and Engineering, vol.15, pp.379-387.
  • [2] Ng E.Y.K., Ghista D.N. and Jegathese R.C. (2005): Perfusion studies of steady flow in in poroelastic myocardium tissue. Computer Methods in Biomechanics and Biomedical Engineering, vol.8, pp.349-357.
  • [3] Nicholson C. (2001): Diffusion and related transport mechanism in brain tissue. − Rep. Prog. Phys., vol.64, pp.815-884.
  • [4] Jinliang Wang Catton I. (2001): Bi porous heat pipes for high power electronic device cooling. − Semiconductor Thermal Measurement and Management, 2001. Seventeenth Annual IEEE Symposium, pp.211 – 218, San Jose, California, USA.
  • [5] Douglas J. Jr, Pereira F. and Li-Ming Yeh (2000): A locally conservative Eulerian–Lagrangian numerical method and its application to nonlinear transport in porous media. − Computational Geosciences, vol.4, pp.1-40.
  • [6] Cheng H-P. and Yeh G-T. (1998): Development and demonstrative application of a 3-D numerical model of subsurface flow, heat transfer, and reactive chemical transport: 3DHYDROGEOCHEM. − J. Contaminant Hydrology, vol.34, pp.47-83.
  • [7] Laschet G., Sauerhering J., Reutter O., Fend T. and Scheele J. (2009): Effective permeability and thermal conductivity of open-cell metallic foams via homogenization on a microstructure model. − Computational Materials Science, vol.45, pp.597-603.
  • [8] Becker M., Fend Th., Hoffschmidt B., Pitz-Paal R., Reutter O., Stamatov V., Steven M. and Trimis D. (2006): Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers. − Solar Energy, vol.80, pp.1241-1248.
  • [9] Roblee L.H.S., Baird R.M. and Tiernery J.W. (1958): Radial porosity variation in packed beds. − AIChemE J., vol.8, pp.359-61.
  • [10] Vafai K. (1984): Convective flow and heat transfer in variable-porosity media. − J. Fluid Mechanics, vol.147, pp.233-259.
  • [11] Zueco J., Anwar Bég O. and Takhar H.S. (2009): Network numerical analysis of magneto-micropolar convection through a vertical circular non-Darcian porous medium conduit. − Computational Materials Science, vol.46, pp.1028-1037.
  • [12] Makinde O.D., Anwar Bég O. and Takhar H.S. (2009): Magnetohydrodynamic viscous flow in a rotating porous medium cylindrical annulus with an applied radial magnetic field. − Int. J. Applied Mathematics and Mechanics, vol.5, No.6, pp.68-81.
  • [13] Damseh R.A., Tahat M.S. and Benim A.C. (2009): Nonsimilar solutions of magnetohydrodynamic and thermophoresis particle deposition on mixed convection problem in porous media along a vertical surface with variable wall temperature. − Progress in Computational Fluid Dynamics: An International Journal, vol.9, pp.58-65.
  • [14] Minkowycz W.J. and Cheng P. (1976): Free convection about a vertical cylinder embedded in a porous medium. − Int. J. Heat Mass Transfer, vol.19, pp.508-513.
  • [15] Hamzeh Alkasasbeh T., Mohd Zuki Salleh, Roslinda Nazar and Ioan Pop (2014): Numerical solutions of radiation effect on magnetohydrodynamic free convection boundary layer flow about a solid sphere with Newtonian heating. − Applied Mathematical Sciences, vol.8, No.140, pp.6989-7000.
  • [16] Kumari M and Gorla R.S.R. (2015): MHD boundary layer flow of a non-Newtonian nanofluid past a wedge. −Journal of Nanofluids, vol.4, No. 1, March, pp.73-81(9).
  • [17] Takhar H.S., Bég O.A. and Kumari M. (1998): Computational analysis of coupled radiation-convection dissipative non-gray gas flow in a non-Darcy porous medium using the Keller-Box implicit difference scheme. − Int. J. Energy Research, vol.22, pp.141-159.
  • [18] Takhar H.S., Bég O.A., Chamkha A.J., Filip D. and Pop I. (2003): Mixed radiation-convection boundary layer flow of an optically dense fluid along a vertical flat plate in a non-Darcy porous medium. − Int. J. Applied Mechanics Engineering, vol.8, pp.483-496.
  • [19] Hossain Md. A. and Pop I. (2001): Studied radiation effects on free convection over a flat plate embedded in a porous medium with high-porosity. − Int. J. Therm. Sci., vol.40, pp.289-295.
  • [20] Dulal Pal and Sewli Chatterjee (2013): Soret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium. − Applied Mathematics and Computation, vol.219, No.14, pp.7556–7574.
  • [21] Abreu C.R.A., Alfradique M.F. and Silva Telles A. (2006): Boundary layer flows with Dufour and Soret effects: I: Forced and natural convection.− Chemical Engineering Science, vol.61, No.13, pp.4282-4289.
  • [22] Bég O.A., Tasveer A., BégA.Y. Bakier and Prasad V. (2009): Chemically-reacting mixed convective heat and mass transfer along inclined and vertical plates with Soret and Dufour effects: Numerical solutions.− Int. J. Applied Mathematics and Mechanics, vol.5, No.2, pp.39-57.
  • [23] Bhargava R., Sharmaand R. and Bég O.A. (2009): Oscillatory chemically-reacting MHD free convection heat and mass transfer in a porous medium with Soret and Dufour effects: finite element modeling.− Int. J. Applied Mathematics and Mechanics, vol.5, No.6, pp.15-37.
  • [24] Seddeek M.A. (2004): Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective flow and mass transfer over accelerating surface with a heat source in the presence of suction and blowing in the case of variable viscosity. − Acta Mech., vol.172, pp.83-94.
  • [25] El-Kabeir S.M.M and Chamkha Ali J. (2013): Heat and mass transfer by mixed convection from a vertical slender cylinder with chemical reaction and Soret and Dufour effects. − Heat Transfer-Asian Research, vol.42, No.7, pp.618-629.
  • [26] Bhattacharyya K., Layek G.C. and Seth G.S. (2014): Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface.− Phys. Scr.vol.89, No.9, 095203.
  • [27] Yih K.A. (2000): Effect of uniform blowing/suction on MHD-natural convection over a horizontal cylinder: UWT or UHF. − Acta Mechanica, vol.44, pp.17-27.
  • [28] Modest M.F. (1993): Radiation Heat Transfer. − New York: MacGraw-Hill.
  • [29] Raptis P. and Perdikis C. (2004): Unsteady flow through a highly porous medium in the presence of radiation. −Transport Porous Medium J., Vol. 57(2), pp. 171-179.
  • [30] Cebeci T. and Bradshaw P. (1984): Physical and Computational Aspects of Convective Heat Transfer.− New York: Springer.
  • [31] Rama Subba Reddy Gorla and Buddakkagari Vasu (2016): Unsteady convective heat transfer to a stretching surface in a non-Newtonian nanofluid. −Journal of Nanofluids, vol.5, No.4, pp.581-594.
  • [32] Merkin J.H. (1977): Free convection boundary layers on cylinders of elliptic cross section. − J. Heat Transfer, vol.99, pp.453-457.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ea636b0-9323-4932-9c7d-85e06c2d9b8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.