Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Projekt czujnika o wysokiej kierunkowości do aplikacji obrazowania mikrofalowego
Języki publikacji
Abstrakty
This paper presents a compact uniplanar Vivaldi antenna sensor for microwave imaging. It is ideal for microwave imaging systems with its large bandwidth and end-fire radiation performance. The Vivaldi patches integrate a coplanar waveguide (CPW) feed line, ensuring the entire structure is compact and simple. Reflection coefficient, radiation pattern, gain, efficiency, and directivity were the antenna parameters analyzed to determine the Vivaldi antenna's performance. The bandwidth of the antenna sensor is wider, approximately 5 GHz (3-8 GHz). The gain of the antenna is 6.72 dBi, and the directivity is 9.59 dBi.
W artykule przedstawiono kompaktowy jednopłaszczyznowy czujnik antenowy Vivaldiego do obrazowania mikrofalowego. Jest idealny do systemów obrazowania mikrofalowego dzięki dużej szerokości pasma i wydajności promieniowania końcowego. Łaty Vivaldi integrują współpłaszczyznową linię zasilającą falowodu (CPW), zapewniając, że cała konstrukcja jest zwarta i prosta. Współczynnik odbicia, charakterystyka promieniowania, wzmocnienie, wydajność i kierunkowość były parametrami anteny analizowanymi w celu określenia wydajności anteny Vivaldi. Szerokość pasma czujnika anteny jest szersza, około 5 GHz (3-8 GHz). Zysk anteny wynosi 6,72 dBi, a kierunkowość 9,59 dBi.
Wydawca
Czasopismo
Rocznik
Tom
Strony
8--11
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
- Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
autor
- Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
Bibliografia
- [1] Abbak, M. et al. (2017) ‘Wideband compact dipole antenna for microwave imaging applications’, IET Microwaves, Antennas and Propagation, 11(2), pp. 265–270. doi: 10.1049/ietmap. 2016.0151.
- [2] Akhter, Z., Abhijith, B. N. and Akhtar, M. J. (2016) ‘Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects’, Journal of Electromagnetic Waves and Applications. Taylor & Francis, 30(9), pp. 1183– 1197. doi: 10.1080/09205071.2016.1186574.
- [3] Alsariera, H. et al. (2020) ‘Compact CPW-fed broadband circularly polarized monopole antenna with inverted L-shaped strip and asymmetric ground plane’, Przeglad Elektrotechniczny, 96(4), pp. 53–56. doi: 10.15199/48.2020.04.10.
- [4] Amdaouch, I., Aghzout, O. and Alejos, A. V. (2019) ‘Confocal microwave imaging algorithm for breast cancer detection based on a high directive corrugated vivaldi antenna pulses’, 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS 2019. IEEE, pp. 1–5. doi: 10.1109/WITS.2019.8723680.
- [5] Amjadi, H. and Hamedani, F. T. (2011) ‘Ultra wideband horn antenna for microwave imaging application’, Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, CSQRWC 2011, 1, pp. 337–340. doi: 10.1109/CSQRWC.2011.6036953.
- [6] Conceição, R. C. et al. (2020) ‘Classification of breast tumor models with a prototype microwave imaging system’, Medical Physics, 47(4), pp. 1860–1870. doi: 10.1002/mp.14064.
- [7] Elevani, D. et al. (2017) ‘On the performance of algebraic reconstruction technique algorithm for microwave imaging’, APCAP 2016 - 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation, Conference Proceedings, 4, pp. 85–86. doi: 10.1109/APCAP.2016.7843111.
- [8] Gibson, P. . (1979) ‘The Vivaldi Aerial’, 1979 9th European Microwave Conference, Brigthon,UK, pp. 101–105.
- [9] Hazarika, P., Santorelli, A. and Popovic, M. (2016) ‘Investigation of antenna array configurations for microwave radar breast screening’, 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics, ANTEM 2016. doi: 10.1109/ANTEM.2016.7550230.
- [10] Islam, M. T. et al. (2017) ‘Microwave Breast Phantom Measurement System with Compact Side Slotted Directional Antenna’, IEEE Access, 5(c), pp. 5321–5330. doi: 10.1109/ACCESS.2017.2690671.
- [11] Islam, M. T. et al. (2018) ‘A compact slotted patch antenna for breast tumor detection’, Microwave and Optical Technology Letters, 60(7), pp. 1600–1608. doi: 10.1002/mop.31215.
- [12] Islam, Md Tarikul et al. (2019) ‘Metamaterial Inspired High Gain Antenna for Microwave Breast Imaging’, APACE 2019 - 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics, Proceedings. IEEE, (November), pp. 1–4. doi: 10.1109/APACE47377.2019.9020819.
- [13] Islam, T. et al. (2018) ‘Computational analysis of Microwave Imaging (MWI) System for Post Stroke Screening Using Unidirectional Antenna’, 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, pp. 447–450.
- [14] Karim, M. N. A. et al. (2016) ‘Wideband slotted antenna for microwave imaging system in ground penetrating radar applications’, ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceedings Papers. doi: 10.1109/SysEng.2016.7753172.
- [15] Khoomwong, E. and Phongcharoenpanich, C. (2020) ‘A Dual- Wideband Crossed Elliptical Disc Antenna with Reconfigurable Radiation Patterns for Multiband Applications’, (4), pp. 43–48. doi: 10.15199/48.2020.04.08.
- [16] Lamultree, S. et al. (2021) ‘An Ultra-Wideband Rectangular Monopole with Circular Ring Antenna for Wireless Communication Applications’, Przegląd Elektrotechniczny, pp. 10–13. doi: 10.15199/48.2021.01.02.
- [17] Laviada, J. et al. (2018) ‘Real-Time Multiview SAR Imaging Using a Portable Microwave Camera with Arbitrary Movement’, IEEE Transactions on Antennas and Propagation, 66(12), pp. 7305–7314. doi: 10.1109/TAP.2018.2870485.
- [18] Lin, X. et al. (2020) ‘Ultra-Wideband Textile Antenna for Wearable Microwave Medical Imaging Applications’, IEEE Transactions on Antennas and Propagation, (c), pp. 1–1. doi: 10.1109/tap.2020.2970072.
- [19] Liu, C. et al. (2019) ‘A Compact, Uniplanar Vivaldi Antenna with an Embedded CPW Feed’, 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, pp. 1–3. doi: 10.1109/csqrwc.2019.8799265.
- [20] Mahdi Moosazadeh, S. K. and Joseph T. Case, and B. S. (2017) ‘UWB Antipodal Vivaldi Antenna for Microwave Imaging of Construction Materials and Sturctures’, Microwave and Optical Technology Letters, 59(6), pp. 1259–1264. doi: 10.1002/mop.
- [21] Maruddani, B., Sandi, E. and Salam, M. F. N. (2018) ‘Design and Implementation of Low-cost Wideband Vivaldi Antenna for Ground Penetrating Radar’, KnE Social Sciences, pp. 498–506. doi: 10.18502/kss.v3i12.4118.
- [22] Mobashsher, A. T. and Abbosh, A. M. (2016) ‘Compact 3-D Slot-Loaded Folded Dipole Antenna with Unidirectional Radiation and Low Impulse Distortion for Head Imaging Applications’, IEEE Transactions on Antennas and Propagation, 64(7), pp. 3245–3250. doi: 10.1109/TAP.2016.2560909.
- [23] Mobashsher, Ahmed Toaha and Abbosh, A. M. (2016) ‘Performance of directional and omnidirectional antennas in wideband head imaging’, IEEE Antennas and Wireless Propagation Letters, 15(c), pp. 1618–1621. doi: 10.1109/LAWP.2016.2519527.
- [24] Mukherjee, S. et al. (2019) ‘A Time Reversal-Based Microwave Imaging System for Detection of Breast Tumors’, IEEE Transactions on Microwave Theory and Techniques. IEEE, PP, pp. 1–14. doi: 10.1109/TMTT.2019.2902555.
- [25] Porter, E. et al. (2016) ‘A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening’, IEEE Transactions on Medical Imaging, 35(6), pp. 1501–1509. doi: 10.1109/TMI.2016.2518489.
- [26] Rahiman, M. H. F. et al. (2019) ‘Microwave tomography sensing for potential agarwood trees imaging’, Computers and Electronics in Agriculture. Elsevier, 164(April), p. 104901. doi: 10.1016/j.compag.2019.104901.
- [27] Rokunuzzaman, M., Samsuzzaman, M. and Islam, M. T. (2017) ‘Unidirectional Wideband 3-D Antenna for Human Head- Imaging Application’, IEEE Antennas and Wireless Propagation Letters, 16(c), pp. 169–172. doi: 10.1109/LAWP.2016.2565610.
- [28] Salleh, A. et al. (2019) Development of antipodal Vivaldi antenna for microwave brain stroke imaging system, International Journal of Engineering &Technology. Available at: www.sciencepubco.com/index.php/IJET.
- [29] Samsuzzaman, M. et al. (2019) ‘A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications’, Microwave and Optical Technology Letters, pp. 2110–2118. doi: 10.1002/mop.31873.
- [30] Shao, W. et al. (2018) ‘A Time-Domain Measurement System for UWB Microwave Imaging’, IEEE Transactions on Microwave Theory and Techniques, 66(5), pp. 2265–2275. doi: 10.1109/TMTT.2018.2801862.
- [31] Tobon Vasquez, J. A. et al. (2019) ‘Design and experimental assessment of a 2D microwave imaging system for brain stroke monitoring’, International Journal of Antennas and Propagation, 2019. doi: 10.1155/2019/8065036.
- [32] Usman, M. et al. (2019) ‘Design of compact ultra-wideband monopole semi-circular patch antenna for 5G wireless communication networks’, Przeglad Elektrotechniczny, 95(4), pp. 223–226. doi: 10.15199/48.2019.04.42.
- [33] Wang, F. and Arslan, T. (2017) ‘A thin-film-based wearable antenna array for breast microwave imaging and diagnosis’, 2017 1st IEEE MTT-S International Microwave Bio Conference, IMBioC 2017. doi: 10.1109/IMBIOC.2017.7965776.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ea03bad-5f93-4fbb-8f70-31ded402425d