Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study focuses on developing a numerical model for the multi-ionic transport process in ordinary concrete (OC) and ultra-high-performance fiber-reinforced concrete (UHPFRC) in its sound and microcracked states. The theoretical background of multi-ionic transport was reviewed from the literature, and extended governing equations considering the influence of microcracks was proposed. The mathematical equations accounting for the coupling effects of the applied constant electrical field were first implemented in a 1D framework (MATLAB) considering idealized and simplified boundary conditions, and then in a 2D framework (TransChlor2D) considering more complex boundary variations. A unique program for detecting the microcracking distribution and modeling it with the transport process was also developed and integrated into TransChlor2D. The transport parameters and coupling effects in the numerical model were calibrated using extensive experimental data from the literature, including an innovative bending-migration test on a microcracked UHPFRC beam, measured by the digital image correlation (DIC) method. Finally, the integrated TransChlor2D model was used to simulate two accelerated migration tests on UHPFRC: one for the undamaged case and the other for the damaged case. The simulations accurately predict the influence of the distribution and opening of microcracks on the multi-ionic transport process and demonstrate the excellent capacity of the proposed model to capture the ion concentration distribution profiles in UHPFRC.
Czasopismo
Rocznik
Tom
Strony
art. e232, 1--21
Opis fizyczny
Bibliogr. 40 poz., il., rys., tab., wykr.
Twórcy
autor
- Laval University, Centre de Recherche sur les Infrastructures en Béton (CRIB), Quebec, Canada
- Université du Québec à Rimouski, Département de Mathématiques, informatique et génie, Quebec, Canada
autor
- Laval University, Centre de Recherche sur les Infrastructures en Béton (CRIB), Quebec, Canada
autor
- Laval University, Centre de Recherche sur les Infrastructures en Béton (CRIB), Quebec, Canada
- Université Claude Bernard Lyon, Villeurbanne, France
autor
- Laval University, Centre de Recherche sur les Infrastructures en Béton (CRIB), Quebec, Canada
autor
- Institut de recherche d’Hydro-Québec, Quebec, Canada
autor
- Institut de recherche d’Hydro-Québec, Quebec, Canada
Bibliografia
- 1. Akeed MH, Qaidi S, Ahmed HU, Faraj RH, Mohammed AS, Emad W, Tayeh BA, Azevedo ARG. Ultra-high-performance fiber-reinforced concrete. Part IV: Durability properties, cost assessment, applications, and challenges. Case Studies Construction Mater. 2022;17:e01271. https://doi.org/10.1016/j.cscm.2022. e01271.
- 2. Provete Vincler J, Sanchez T, Turgeon V, Conciatori D, Sorelli L. A modified accelerated chloride migration tests for UHPC and UHPFRC with PVA and steel fibers. Cement Concrete Res. 2019;117:38-44.
- 3. Hajiesmaeili A, Denarié E. Capillary fow in UHPFRC with synthetic fibers, under high tensile stresses. Cement Concrete Res. 2021;143:106368.
- 4. Graybeal BA. Compression Testing of Ultra-High-Performance Concrete. Adv Civil Eng Mater. 2014;4:102-12.
- 5. Choi J-I, Jang SY, Kwon S-J, Lee BY. Tensile Behavior and Cracking Pattern of an Ultra-High-Performance Mortar Reinforced by Polyethylene Fiber. Adv Mater Sci Eng. 2017;2017:1-10.
- 6. Brühwiler E, Denarié E. Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete. Structural Eng Int. 2013;23:450-7.
- 7. Sanchez T, Conciatori D, Laferriere F, Sorelli L. Modelling capillary effects on the reactive transport of chloride ions in cementitious materials. Cement Concrete Res. 2020;131:106033. https://doi.org/10.1016/j.cemconres.2020.106033.
- 8. Bourbatache K, Millet O, Aït-Mokhtar A, Amiri O. Modeling the Chlorides Transport in Cementitious Materials By Periodic Homogenization. Transp Porous Med. 2012;94:437-59.
- 9. A. Poursaee, Corrosion of steel in concrete structures. In: Corrosion of Steel in Concrete Structures, Elsevier, 2016: pp. 19-33. https://doi.org/10.1016/B978-1-78242-381-2.00002-X.
- 10. Rahman MK, Al-Kutti WA, Shazali MA, Baluch MH. Simulation of Chloride Migration in Compression-Induced Damage in Concrete. J Mater Civ Eng. 2012;24:789-96.
- 11. A. Blagojevic, S.A.A.M. Fennis-Huijben, J. Walraven, Impact of cracks on chloride-induced corrosion and durability of reinforced concrete structures – a literature review. Mater Sci. 2012. http://resolver.tudelft.nl/uuid:53983aee-c4c1-4e3a-b3c4-c209b6daab5a. Accessed 27 Aug 2023.
- 12. E. Samson, J. Marchand, Multiionic approaches to model chloride binding in cementitious materials (2006), 2nd Int. RILEM Symp. on Advances in Concrete through Science and Engineering.
- 13. Samson E, Marchand J. Modeling the transport of ions in unsaturated cement-based materials. Comput Struct. 2007;85:1740-56.
- 14. Baroghel-Bouny V, Thiéry M, Wang X. Modelling of isothermal coupled moisture-ion transport in cementitious materials. Cement Concrete Res. 2011;41:828-41.
- 15. Cusatis G, Pelessone D, Mencarelli A. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cement Concrete Composites. 2011;33:881-90.
- 16. Di Luzio G, Cusatis G. Hygro-thermo-chemical modeling of high performance concrete. I: Theory. Cement Concrete Composites. 2009;31:301-8.
- 17. Grassl P, Antonelli A. 3D network modelling of fracture processes in fibre-reinforced geomaterials. Int J Solids Struct. 2019;156-157:234–42. https://doi.org/10.1016/j.ijsolstr.2018.08.019. 18. Šavija B, Pacheco J, Schlangen E. Lattice modeling of chloride diffusion in sound and cracked concrete. Cement Concrete Composites. 2013;42:30-40.
- 19. Cao, Y. Y. & Yu, Q. L. & Brouwers, H. J. Experimental and Modeling Study of Double-layered UHPFRC under Bending, International Interactive Symposium on Ultra-High-Performance Concrete 2019;2(1). https://doi.org/10.21838/uhpc.9651.
- 20. Chen X, Sanchez T, Conciatori D, Chaouki H, Sorelli L, Selma B, Chekired M. Numerical modeling of 2D hygro-thermal transport in unsaturated concrete with capillary suction. J Build Eng. 2021;45:103640.
- 21. Castellote M, Andrade C, Alonso C. Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests. Cement Concrete Res. 2001;31:1411-20.
- 22. Conciatori D, Sadouki H, Brühwiler E. Capillary suction and diffusion model for chloride ingress into concrete. Cement Concrete Res. 2008;38:1401-8.
- 23. Sanchez T, Henocq P, Millet O, Aït-Mokhtar A. Coupling PhreeqC with electro-diffusion tests for an accurate determination of the diffusion properties on cementitious materials. J Electroanalytical Chem. 2020;858:113791.
- 24. Němeček J, Kruis J, Koudelka T, Krejčí T. Simulation of chloride migration in reinforced concrete. Appl Math Comput. 2018;319:575-85.
- 25. Bouteiller V, Tissier Y, Marie-Victoire E, Chaussadent T, Joiret S. The application of electrochemical chloride extraction to reinforced concrete – a review. Construction Build Mater. 2022;351:128931. https://doi.org/10.1016/j.conbuildmat.2022. 128931.
- 26. Barberon F, Baroghel-Bouny V, Zanni H, Bresson B, d’Espinose de la Caillerie J-B, Malosse L, Gan Z. Interactions between chloride and cement-paste materials. Magn Reson Imaging. 2005;23:267-72.
- 27. Krabbenhøft K, Krabbenhøft J. Application of the Poisson-Nernst-Planck equations to the migration test. Cement Concrete Res. 2008;38:77-88.
- 28. Samson E, Lemaire G, Marchand J, Beaudoin JJ. Modeling chemical activity effects in strong ionic solutions. Comput Mater Sci. 1999;15(3):285-94. https://doi.org/10.1016/S0927-0256(99) 00017-8.
- 29. Appelo CAJ. Solute transport solved with the Nernst-Planck equation for concrete pores with ‘free’ water and a double layer. Cement Concrete Res. 2017;101:102-13.
- 30. Liu Q, Li L, Easterbrook D, Yang J. Multi-phase modelling of ionic transport in concrete when subjected to an externally applied electric field. Eng Struct. 2012;42:201-13.
- 31. Sanchez T, Étude comparative de la diffusion d’espèces anioniques et cationiques dans les matériaux cimentaires, Université de la Rochelle, 2018. https://theses.hal.science/tel-01865197. Accessed 27 Aug 2023.
- 32. Samson E, Marchand J. Modeling the effect of temperature on ionic transport in cementitious materials. Cement Concrete Res. 2007;37:455-68.
- 33. Samson E, Marchand J, Snyder K. Calculation of ionic diffusion coefficients on the basis of migration test results. Mater Struct. 2003;36:156-65. https://doi.org/10.1007/BF02479554.
- 34. V. Turgeon-Mallette, Durabilité du béton fbré à ultra-haute performance : effect de la présence de microfssures sur la migration des ions chlorure., Mémoire de maîtrise, Université Laval, 2021. https://corpus.ulaval.ca/entities/publication/e02f3840-241e-4449-a7bb-8e9f7f906d8b. Accessed 27 Aug 2023.
- 35. Turgeon-Malette V, Chen X, Bah AS, Conciatori D, Sanchez T, Teguedy MC, Sorelli L. Chloride ion permeability of Ultra-high performance fiber-reinforced concrete under sustained load. J Build Eng. 2023;66:105842. https://doi.org/10.1016/j.jobe.2023.105842.
- 36. ASTM International, West Conshohocken, PA, ASTM C1202-17, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, (2017). https://www.astm.org/c1202-19.html. Accessed 27 Aug 2023.
- 37. Grédiac M, Blaysat B, Sur F. A critical comparison of some metrological parameters characterizing local digital image correlation and grid method. Exp Mech. 2017;57:871-903.
- 38. X. Chen, Modélisation numérique et étude expérimentale des comportements couplés de transport hygro-thermo-chimio-électrique des matériaux cimentaires, Thèse de doctorat, Université Laval, 2022. http://hdl.handle.net/20.500.11794/71860. Accessed 27 Aug 2023.
- 39. Bah AS, Sanchez T, Zhang Y, Sasai K, Conciatori D, Chouinard L, Power GJ, Zuferey N. Assessing the condition state of a concrete bridge combining visual inspection and nonlinear deterioration model. Struct Infrastructure Eng. 2022. https://doi.org/10.1080/15732479.2022.2081987.
- 40. Millar S, Kruschwitz S, Wilsch G. Determination of total chloride content in cement pastes with laser-induced breakdown spectroscopy (LIBS). Cem Concr Res. 2019;117:16-22. https://doi.org/10.1016/j.cemconres.2018.12.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e9dbe59-35c2-4f50-8c37-60981375f24c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.