PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wigner transform approach to dynamic-variable partially coherent laser beam characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
1) Background: the modeling, characterization, transformation and propagation of high-power CW laser beams in optical (including fiberoptic) trains and in the atmosphere have become hot topics in laser science and engineering in the past few years. Single-mode output is mandatory for high-power CW laser applications in the military field. Moreover, an unstationary, dynamic operation regime is typical. Recognized devices and procedures for laser-beam diagnostics could not be directly applied because of dynamic behavior and untypical non-Gaussian profiles. 2) Methods: the Wigner transform approach was proposed to characterize dynamically variable high-power CW laser beams with significant deterministic aberrations. Wavefront-sensing measurements by means of the Shack-Hartmann method and decomposition into an orthogonal Zernike basis were applied. 3) Results: deterministic aberration as a result of unstationary thermal-optic effects depending on the averaged power of the laser output was found. Beam quality determined via the Wigner approach was changed in the same way as the measurements of the beam diameter in the far field. 4) Conclusions: such an aberration component seems to be the main factor causing degradation in beam quality and in brightness of high-power CW laser beams.
Rocznik
Strony
141--146
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology, Institute of Optoelectronics
autor
  • Military University of Technology, Institute of Optoelectronics
autor
  • Military University of Technology, Institute of Optoelectronics
Bibliografia
  • [1] S.J. McNaught, H. Komine, S.B. Weiss, R. Simpson, A.M. Johnson, J. Machan, C.P. Asman, M. Weber, G.C. Jones, M.M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J.Marmo, and H. Injeyan, “100 kW Coherently Combined Slab MOPAs”, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD), paper CThA1 (2009).
  • [2] Z. Mierczyk, “Lasers in the dual use technologies”, Bull. Pol. Ac.: Tech., 60(3), 691‒696 (2012).
  • [3] J. Badziak, ”Laser nuclear fusion: current status, challenges and prospect”, Bull. Pol. Ac.: Tech., 60(4), 729‒738 (2012).
  • [4] L. Sun, Y. Guo, C. Shao, Y. Li, Y. Zheng, C. Sun, X. Wang, and L. Huang, “10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd:YAG oscillator and an extra-cavity adaptive optics system”, Opt. Lett., 43(17), 4160 – 4163 (2018).
  • [5] H. Injeyan, S. Palese, and G.D. Goodno (High Power Laser Handbook, Mc Graw Hill, New York, 2011).
  • [6] R.A. Motes, S.A. Shakir, and R.W. Berdine, Introduction to High Power lasers, (Directed Energy Professional Society, Albuquerque NM, USA, 2013).
  • [7] P. Gontar, L. Gorajek, K. Kopczyński, and J.K. Jabczyński, “Characterization of beam quality of 10-kW class laser demonstrator”, Proc. SPIE, 11624‒4 (2019).
  • [8] ISO/TR 11146‒3, Lasers and laser-related equipment- Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods, ISO, (2004).
  • [9] J. Marmo, H. Injeyan, H. Komine, S. McNaught, and J. Machan, “Joint high power solid state laser program advancements at Northrop Grumman”, Proc. SPIE, 7195, 719507 (2009).
  • [10] J. Penano, P. Sprangle, A. Ting, R. Fischer, B. Hafizi, and P. Serafim, “Optical quality of high-power laser beams in lenses”, J. Opt. Soc. Am. B, 26(3), 503–510 (2009).
  • [11] B. Fakizi, A. Ting, D.F. Gordon, P. Sprangle, J.R. Penano, R.F. Fischer, G. DiComo, and D.C. Colombant, “Laser heating of uncoated optics in a convective medium”, Appl. Opt. 51(14), 2573–2580 (2012).
  • [12] J.K. Jabczynski, M. Kaskow, L. Gorajek, K. Kopczynski, and W. Zendzian, “Modeling of the laser beam shape for high-power applications”, Opt. Eng. 57(4) 046107 (2018).
  • [13] M.J. Bastiaans, “Application of the Wigner Distribution Function”, J. Opt. Soc. Am. A, 3, 1227 (1986).
  • [14] R. Simon, N. Mukunda, and E.C.G. Sudarshan, “Partially coherent beams and a generalized ABCD law”, Opt. Comm., 65, 322‒328 (1988).
  • [15] M.A. Alonso, “Wigner functions in optics: describing beams as rays bundles and pulses as a particle ensemebles”, Advances in Optics and Photonics, 271‒365 (2011).
  • [16] B. Eppich, S. Johansson, H. Laabs, and H. Weber, “Measuring laser beam parameters, phase and spatial coherence using the Wigner function”, Proc. SPIE, 3930, 76‒86 (2000).
  • [17] B. Eppich, G. Mann, and H. Weber, “Spatial coherence: comparison of interferometric and non-interferometric measurements”, Proc. SPIE, 4969‒37 (2003).
  • [18] B.J. Neubert, Measurements of the Wigner Distribution of Aberrated and Partially Coherent Laser Beams , PhD thesis, Cuvillier Verlag Goettingen, Germany, 2004.
  • [19] T. Sean Ross, Laser Beam Quality Metrics,( SPIE Press, Bellingham, USA, 2013).
  • [20] A.E. Siegman, “New Developments in laser resonators”, Proc. SPIE, 1224, 2‒14 (1990).
  • [21] Handbook of Optical Systems: Vol. 5. Metrology of Optical Components and Systems., Non-interferometric Wavefront Sensing. Edited by Herbert Gross, (Wiley-VCH Verlag GmbH, Chapter 47 2012).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e9d8a91-4f31-4490-aae8-fbf02456bbc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.