PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Wick functional limit theorem

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that weak convergence of multivariate discrete Wiener integrals towards the continuous counterparts carries over to the application of discrete and continuous Wick calculus. This is done by the representation of arbitrary Wick products of Wiener integrals in terms of generalized Hermite polynomials and a discrete analog of the Hermite recursion. The result is a multivariate non-central limit theorem in the form of a Wick functional limit theorem. As an application we give approximations of multivariate processes based on fractional Brownian motions for arbitrary Hurst parameters H ∈ (0, 1).
Rocznik
Strony
127--145
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Institute of Mathematics, University of Mannheim, A5, 6, PO Box D-68131 Mannheim, Germany
Bibliografia
  • [1] F. Avram and M. S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab. 15 (2) (1987), pp. 767-775.
  • [2] C. Bender and P. Parczewski, Approximating a geometric fractional Brownian motion and related processes via discrete Wick calculus, Bernoulli 16 (2) (2010), pp. 389-417.
  • [3] C. Bender and P. Parczewski, On the connection between discrete and continuous Wick calculus with an application to the fractional Black-Scholes model, in: Stochastic Processes, Filtering, Control and Their Applications, S. Cohen et al. (Eds.), World Scientific, 2012, pp. 3-40.
  • [4] C. Bender and P. Parczewski, On convergence of S-transforms and a Wiener chaos limit theorem, in preparation (2014).
  • [5] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
  • [6] R. Fox and M. S. Taqqu, Multiple stochastic integrals with dependent integrators, J. Multivariate Anal. 21 (1) (1987), pp. 105-127.
  • [7] L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem, in: Dependence in Probability and Statistics (Oberwolfach, 1985), E. Eberlein and M. S. Taqqu (Eds.), Progr. Probab. Statist., Vol. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 21-71.
  • [8] H. Gzyl, An exposé on discrete Wiener chaos expansions, Bol. Asoc. Mat. Venez. 13 (1) (2006), pp. 3-27.
  • [9] H. Holden, T. Lindstrøm, B. Øksendal, and J. Ubøe, Discrete Wick calculus and stochastic functional equations, Potential Anal. 1 (3) (1992), pp. 291-306.
  • [10] H. Holden, B. Øksendal, J. Ubøe, and T. Zhang, Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, second edition, Springer, New York 2010.
  • [11] Y. Hu and J. A. Yan, Wick calculus for nonlinear Gaussian functionals, Acta Math. Appl. Sinica (English Ser.) 25 (3) (2009), pp. 399-414.
  • [12] S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, Cambridge 1997.
  • [13] H.-H. Kuo, White Noise Distribution Theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996.
  • [14] D. Nualart, The Malliavin Calculus and Related Topics, second edition, Probab. Appl., Springer, New York 2006.
  • [15] P. Parczewski, A fractional Donsker theorem, Stoch. Anal. Appl. 32 (2014), pp. 328-347.
  • [16] T. Sottinen, Fractional Brownian motion, random walks and binary market models, Finance Stoch. 5 (2001), pp. 343-355.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e9d601c-418c-4802-aa1f-ca7b35320d2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.