PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon nanostructure growth: new application of magnetron discharge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The application of a common magnetron discharge to the growth of carbon nanostructures is studied. The simplicity of the proposed technique can be beneficial for the development of new plasma reactors for large-scale production of carbon nanostructures. Design/methodology/approach: Graphite cathode was treated by carbon-containing powder accelerated by use of nozzle, and then aged in hydrogen. Superposition of glow and arc discharges was obtained, when putting the cathode under the negative biasing with respect to the walls of a vacuum chamber. The pulsed discharge was preserved through the whole time of treatment. This process was explained in terms of interaction of glow discharge plasma with a surface of the cathode made of non-melting material. Findings: The plasma treatment resulted in generation of the diverse nanostructures confirmed by SEM and TEM images. Spruce-like nanostructures and nanofibers are observed near the cathode edge where the plasma was less dense; a grass-like structure was grown in the area of “race-track”; net-like nanostructures are found among the nanofibers. These findings allow concluding about the possible implementation of the proposed method in industry. Research limitations/implications: The main limitation is conditioned by an explosive nature of nanostructure generation in arcs; thus, more elaborate design of the setup should be developed in order to collect the nanospecies in the following study. Practical implications: High-productivity plasma process of nanosynthesis was confirmed in this research. It can be used for possible manufacturing of field emitters, gas sensors, and supercapacitors. Originality/value: Synthesis of carbon nanostructures is conducted by use of a simple and well-known technique of magnetron sputtering deposition where a preliminary surface treatment is added to expand the production yield and diversity of the obtained nanostructures.
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv, 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv, 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv, 61070, Ukraine
Bibliografia
  • [1] L.A. Dobrzański, The significance of the nanostructural components on the properties of the nanoengineering materials, Journal of Achievements in Materials and Manufacturing Engineering 88/2 (2018) 55-85. DOI: https://doi.org/10.5604/01.3001.0012.6150
  • [2] H. Liu, L. Zhang, M. Yan, J. Yu, Carbon nanostructures in biology and medicine, Journal of Materials Chemistry B 5/32 (2017) 6437-6450. DOI: https://doi.org/10.1039/c7tb00891k
  • [3] M. Curcio, A. Farfalla, F. Saletta, E. Valli, E. Pantuso, F. P. Nicoletta, F. Iemma, O. Vittorio, G. Cirillo, Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment, Molecules 25/9 (2020) 2102. DOI: https://doi.org/10.3390/molecules25092102
  • [4] Y. Suchikova, S. Vambol, V. Vambol, N. Mozaffari, N. Mozaffari, Justification of the most rational method for the nanostructures synthesis on the semiconductors surface, Journal of Achievements in Materials and Manufacturing Engineering 92/1-2 (2019) 19-28. DOI: https://doi.org/10.5604/01.3001.0013.3184
  • [5] C. Li, X. Zhang, K. Wang, F. Su, C.-M. Chen, F. Liu, Z.-S. Wu, Y. Ma, Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors, Journal of Energy Chemistry 54 (2021) 352-367. DOI: https://doi.org/10.1016/j.jechem.2020.05.058
  • [6] C. Ma, T. Xu, Y. Wang, Advanced carbon nanostructures for future high performance sodium metal anodes, Energy Storage Materials 25 (2020) 811-826. DOI: https://doi.org/10.1016/j.ensm.2019.09.007
  • [7] T. Tański, W. Matysiak, Optical properties of PVP/ZnO composite thin films, Journal of Achievements in Materials and Manufacturing Engineering 82/1 (2017) 5-11. DOI: https://doi.org//10.5604/01.3001.0010.2071
  • [8] J. Gutiérrez-Martínez, C. Nieto-Delgado, M. Avalos Borja, E. Basiuk, J. Rene Rangel-Mendez, Fast benzene vapor capture by natural macroporous carbonized fibers improved with carbon nanostructures, Separation and Purification Technology 257 (2020) 117956. DOI: https://doi.org/10.1016/j.seppur.2020.117956
  • [9] M. Ghiyasiyan-Arani, M. Salavati-Niasari, Strategic design and electrochemical behaviors of Li-ion battery cathode nanocomposite materials based on AlV3O9 with carbon nanostructures, Composites Part B: Engineering 183 (2020) 107734. DOI: https://doi.org/10.1016/j.compositesb.2019.107734
  • [10] M. Ghalandari, A. Maleki, A. Haghighi, M.S. Shadloo, M.A. Nazari, I. Tlili, Applications of nanofluids containing carbon nanotubes in solar energy systems: A review, Journal of Molecular Liquids 313 (2020) 113476. DOI: https://doi.org/10.1016/j.molliq.2020.113476
  • [11] X. Chen, J. Li, Superlubricity of carbon nanostructures, Carbon 158 (2020) 1-23 DOI: https://doi.org/10.1016/j.carbon.2019.11.077
  • [12] A. Krzyżak, E. Kosicka, R. Szczepaniak, T. Szymczak, Evaluation of the properties of polymer composites with carbon nanotubes in the aspect of their abrasive wear, Journal of Achievements in Materials and Manufacturing Engineering 95/1 (2019) 5-12. DOI: https://doi.org/10.5604/01.3001.0013.7619
  • [13] G. Kostyuk, V. Popov, Y. Shyrokyi, H. Yevsieienkova, Efficiency and performance of milling using cutting tools with plates of a new class, in: V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, P. Dasic (eds.), Advanced Manufacturing Processes II. InterPartner 2020, Lecture Notes in Mechanical Engineering, Springer, Cham, 2021, 598-608. DOI: https://doi.org/10.1007/978-3-030-68014-5_58
  • [14] A. Bartkowska, D. Bartkowski, A. Piasecki, Effect of diffusion borochromizing on microstructure, microhardness and corrosion resistance of tool steel with different carbon content, Journal of Achievements in Materials and Manufacturing Engineering 80/2 (2017) 49-55. DOI: https://doi.org/10.5604/01.3001.0010.2025
  • [15] Q. Sun, R. Zhang, J. Qiu, R. Liu, W. Xu, On-surface synthesis of carbon nanostructures, Advanced Materials 30/17 (2018) 1705630. DOI: https://doi.org/10.1002/adma.201705630
  • [16] O. Mykhailiv, H. Zubyk, M. E. Plonska-Brzezinska, Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications, Inorganica Chimica Acta 468 (2017) 49-66. DOI: https://doi.org/10.1016/j.ica.2017.07.021
  • [17] J.L. Fajardo-Díaz, S.M. Durón-Torres, F. López-Urías, E. Muñoz-Sandoval, Synthesis, characterization and cyclic voltammetry studies of helical carbon nanostructures produced by thermal decomposition of ethanol on Cu-foils, Carbon 155 (2019) 469-482. DOI: https://doi.org/10.1016/j.carbon.2019.09.015
  • [18] F.C. Ballotin, L.T. Perdigão, M.V.B. Rezende, S.D. Pandey, M.J. da Silva, R.R. Soares, J.C.C. Freitas, A.P. de Carvalho Teixeira, R.M. Lago, Bio-oil: a versatile precursor to produce carbon nanostructures in liquid phase under mild conditions, New Journal of Chemistry 43 (2019) 2430-2433. DOI: https://doi.org/10.1039/c8nj05251d
  • [19] A. Kudo, S.A. Steiner, B.C. Bayer, P.R. Kidambi, S. Hofmann, M.S. Strano, B.L. Wardle, CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield, Journal of the American Chemical Society 136/51 (2014) 17808-17817. DOI: https://doi.org/10.1021/ja509872y
  • [20] Y. Ma, X. Sun, N. Yang, J. Xia, L. Zhang, X. Jiang, Shape-controlled growth of carbon nanostructures: yield and mechanism, Chemistry - A European Journal 21/35 (2015) 12370-12375. DOI: https://doi.org/10.1002/chem.201500440
  • [21] R. Kumar, R. Rajendiran, H.K. Choudhary, G.M. Naveen Kumar, B. Balaiah, A.V. Anupama, B. Sahoo, Role of pyrolysis reaction temperature and heating-rate in the growth and morphology of carbon nanostructures, Nano-Structures and Nano-Objects 12 (2017) 229-238. DOI: https://doi.org/10.1016/j.nanoso.2017.11.002
  • [22] Z. Jia, K. Kou, M. Qin, H. Wu, F. Puleo, L. Liotta, Controllable and large-scale synthesis of carbon nanostructures: a review on bamboo-like nanotubes, Catalysts 7/9 (2017) 256. DOI: https://doi.org/10.3390/catal7090256
  • [23] N. Santhosh, G. Filipič, E. Tatarova, O. Baranov, H. Kondo, M. Sekine, M. Hori, K. Ostrikov, U. Cvelbar, Oriented carbon nanostructures by plasma processing: recent advances and future challenges, Micromachines 9/11 (2018) 565. DOI: https://doi.org/10.3390/mi9110565
  • [24] O. Baranov, I. Levchenko, S. Xu, J.W.M. Lim, U. Cvelbar, K. Bazaka, Formation of vertically oriented graphenes: what are the key drivers of growth? 2D Materials 5/4 (2018) 044002. DOI: https://doi.org/10.1088/2053-1583/aad2bc
  • [25] O. Baranov, M. Romanov, K. Ostrikov, Effective control of ion fluxes over large areas by magnetic fields: from narrow beams to highly uniform fluxes, Physics of Plasmas 16/5 (2009) 053505. DOI: https://doi.org/10.1063/1.3130267
  • [26] O. Baranov, S. Xu, K. Ostrikov, B.B. Wang, U. Cvelbar, K. Bazaka, I. Levchenko, Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach, Review of Modern Plasma Physics 2/4 (2018) 4. DOI: https://doi.org/10.1007/s41614-018-0016-7
  • [27] F.H.O. Carvalho, A.R. Vaz, S. Moshkalev, R.V. Gelamo, Syntesis of carbon nanostructures near room temperature using microwave PECVD, Materials Research 18/4 (2015) 860-866. DOI: https://doi.org/10.1590/1516-1439.005315
  • [28] X. Zeng, D. Fu, H. Sheng, S. Xie, X. Li, Q. Hu, J. Zou, Growth and morphology of carbon nanostructures by microwave-assisted pyrolysis of methane, Physica E: Low-Dimensional Systems and Nanostructures 42/8 (2010) 2103-2108. DOI: https://doi.org/10.1016/j.physe.2010.04.002
  • [29] S. Vizireanu, S.D. Stoica, C. Luculescu, L.C. Nistor, B. Mitu, G. Dinescu, Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma, Plasma Sources Science and Technology 19/3 (2010) 034016. DOI: https://doi.org/10.1088/0963-0252/19/3/034016
  • [30] N. Bundaleska, D. Tsyganov, A. Dias, E. Felizardo, J. Henriques, F.M. Dias, M. Abrashev, J. Kissovski, E. Tatarova, Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions, Physical Chemistry Chemical Physics 20/20 (2018) 13810-13824. DOI: https://doi.org/10.1039/c8cp01896k
  • [31] M. Ghosh, G. Mohan Rao, Synthesis of vertically aligned and tree-like carbon nanostructures, Carbon 133 (2018) 239-248. DOI: https://doi.org/10.1016/j.carbon.2018.03.030
  • [32] M. Keidar, A. Shashurin, J. Li, O. Volotskova, M. Kundrapu, T.S. Zhuang, Arc plasma synthesis of carbon nanostructures: where is the frontier?, Journal of Physics D: Applied Physics 44/17 (2011) 174006. DOI: https://doi.org/10.1088/0022-3727/44/17/174006
  • [33] R. Kumar, R.K. Singh, P.K. Dubey, R.M. Yadav, D.P. Singh, R.S. Tiwari, O.N. Srivastava, Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique, Journal of Nanoparticle Research 17/1 (2015) 24. DOI: https://doi.org/10.1007/s11051-014-2837-9
  • [34] C. Corbella, S. Portal, M.N. Kundrapu, M. Keidar, Anodic arc discharge: Why pulsed?, Physics of Plasmas 27/5 (2020) 054501. DOI: https://doi.org/10.1063/5.0002872
  • [35] Z. Bo, K. Yu, G. Lu, P. Wang, S. Mao, J. Chen, Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition, Carbon 49/6 (2011) 1849-1858. DOI: https://doi.org/10.1016/j.carbon.2011.01.007
  • [36] O. Baranov, M. Romanov, M. Wolter, S. Kumar, X. Zhong, K. Ostrikov, Low-pressure planar magnetron discharge for surface deposition and nanofabrication, Physics of Plasmas 17 (2010) 053509. DOI: https://doi.org/10.1063/1.3431098
  • [37] O. Baranov, M. Romanov, K. Ostrikov, Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge, Physics of Plasmas 16/6 (2009) 063505. DOI: https://doi.org/10.1063/1.3153554
  • [38] J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Atomic force microscopy investigation of the surface modification of highly oriented pyrolytic graphite by oxygen plasma, Journal of Materials Chemistry 10/7 (2000) 1585-1591. DOI: https://doi.org/10.1039/B000694G
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e9c635a-a33c-4069-aa00-ce0ec16a5761
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.