Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH 2023 (22-24 September 2023 ; Krakow, Poland)
Języki publikacji
Abstrakty
Hydroxychloroquine (HCQ), a 4-amino quinoline derivative, has antimalarial and anti-inflammatory activity and was most recently proposed in the treatment of SARS-COVID-19. Its pharmacokinetics and toxic side effects necessitate the monitoring of its presence in the environment and its removal from wastewater. In this study, HCQ was removed from an aqueous solution with a removal efficiency of between 80% and 90% under electron beam (EB) irradiation. The degradation of HCQ was propagated by reactions involving both the hydroxyl radical and aqueous electron. The degradation was observed to follow a pseudo-first-order kinetic reaction. The applied radiation dose, pH, and initial HCQ concentration were influential in the degradation efficiency under EB irradiation. Acidic and alkaline pH favored the removal of HCQ under EB irradiation. Even though the initial HCQ was successfully degraded, it was not completely mineralized. The TOC and chemical oxygen demand (COD) remained at a relatively stable level following EB irradiation of the aqueous solutions. This is attributed to the formation of other organic compounds that were not degraded under the investigated experimental conditions.
Czasopismo
Rocznik
Tom
Strony
65--74
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warsaw, Poland
Bibliografia
- 1. Tarazona, J. v., Martínez, M., Martínez, M. A., & Anadón, A. (2021). Environmental im pact assessment of COVID-19 therapeutic solutions. A prospective analysis. Sci. Total Environ., 778. https://doi.org/10.1016/j.scitotenv.2021.146257.
- 2. Kumar, V., Garg, S., & Sharma, P. (2018). Chemical kinetics and stability studies of Amlodipine Besylate. Asian Journal of Pharmaceutical Research and Development, 6(2), 87–92.
- 3. Kumar, S., Pratap, B., Dubey, D., Kumar, A., Shukla, S., & Dutta, V. (2022). Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis. Environ. Monit. Assess., 194(12), 1–16. https://doi.org/10.1007/S10661-022-10540-8.
- 4. Efrain Merma Chacca, D., Maldonado, I., & Vilca, F. Z. (2022). Environmental and ecotoxicological effects of drugs used for the treatment of COVID 19. Front. Environ. Sci., 10, 1287. https://doi.org/10.3389/FENVS.2022.940975.
- 5. Monsef, R., & Salavati-Niasari, M. (2022). Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J. Colloid Interface Sci., 613, 1–14. https://doi.org/10.1016/J.JCIS.2022.01.039.
- 6. Pushpanjali, P. A., Manjunatha, J. G., Hareesha, N., Girish, T., Al-Kahtani, A. A., Tighezza, A. M., & Ataollahi, N. (2022). Electrocatalytic determination of hydroxychloroquine using sodium dodecyl sulphate modified carbon nanotube paste electrode. Top. Catal., 1, 1–9. https://doi.org/10.1007/S11244-022-01568-8.
- 7. Dabić, D., Babić, S., & Škorić, I. (2019). The role of photodegradation in the environmental fate of hydroxychloroquine. Chemosphere, 230. https://doi.org/10.1016/j.chemosphere.2019.05.032.
- 8. Babić, S., Dabić, D., & Ćurković, L. (2017). Fate of hydroxychloroquine in the aquatic environment. In CEST2017–15th International Conference on Environmental Science and Technology, 31 August–2 September 2017, Rhodes, Greece, pp. 1–5.
- 9. Sayed, A. E. D. H., Hamed, M., & Soliman, H. A. M. (2021). Spirulina platensis alleviated the hemotoxicity, oxidative damage and histopathological alterations of hydroxychloroquine in Catfish (Clarias gariepinus). Front. Physiol., 12, 881. https://doi.org/10.3389/FPHYS.2021.683669/BIBTEX.
- 10. da Luz, T. M., Araújo, A. P. da C., Estrela, F. N., Braz, H. L. B., Jorge, R. J. B., Charlie-Silva, I., & Malafaia, G. (2021). Can use of hydroxychloroquine and azithromycin as a treatment of COVID-19 affect aquatic wildlife? A study conducted with neotropical tadpole. Sci. Total Environ., 780, 146553. https://doi.org/10.1016/J.SCITOTENV.2021.146553.
- 11. Tønnesen, H. H., Grislingaas, A. L., Woo, S. O., & Karlsen, J. (1988). Photochemical stability of antimalarial. I. Hydroxychloroquine. Int. J. Pharm., 43(3). https://doi.org/10.1016/0378-5173(88)90276-1.
- 12. Kargar, F., Bemani, A., Sayadi, M. H., & Ahmadpour, N. (2021). Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. J. Photochem. Photobiol. A-Chemistry, 419, 113453. https://doi.org/10.1016/J. JPHOTOCHEM.2021.113453.
- 13. Dastborhan, M., Khataee, A., Arefi-Oskoui, S., & Yoon, Y. (2022). Synthesis of flower-like MoS2/CNTs nanocomposite as an efficient catalyst for the sonocatalytic degradation of hydroxychloroquine. Ultrason. Sonochem., 87, 106058. https://doi.org/10.1016/J.ULTSONCH.2022.106058.
- 14. Bensalah, N., Midassi, S., Ahmad, M. I., & Bedoui, A. (2020). Degradation of hydroxychloroquine by electrochemical advanced oxidation processes. Chem. Eng. J., 402, 126279. https://doi.org/10.1016/j.cej.2020.126279.
- 15. de Araújo, D. M., dos Santos, E. v., Martínez-Huitle, C. A., & de Battisti, A. (2022). Achieving electrochemical-sustainable-based solutions for monitoring and treating hydroxychloroquine in real water matrix. Appl. Sci., 12(2), 699. https://doi.org/10.3390/APP12020699.
- 16. Ansarian, Z., Khataee, A., Arefi-Oskoui, S., Orooji, Y., & Lin, H. (2022). Ultrasound-assisted catalytic activation of peroxydisulfate on Ti3GeC2 MAX phase for efficient removal of hazardous pollutants. Mater. Today Chem., 24, 100818. https://doi.org/10.1016/J.MTCHEM.2022.100818,
- 17. da Silva, P. L., Nippes, R. P., Macruz, P. D., Hegeto, F. L., & Olsen Scaliante, M. H. N. (2021). Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite. Water Sci. Technol., 84(3), 763–776. https://doi.org/10.2166/WST.2021.265,18. el Amri, R., Elkacmi, R., Hasib, A., & Boudouch, O. (2022). Removal of hydroxychloroquine from an aqueous solution using living microalgae: Effect of operating parameters on removal efficiency and mechanisms. Water Environ. Res., 9, e10790-n/a.
- 19. Gümüş, D., & Gümüş, F. (2022). Removal of hydroxychloroquine using engineered biochar from algal biodiesel industry waste: Characterization and design of experiment (DoE). Arabian Journal for Science and Engineering, 6, 7325–7334.
- 20. Nippes, R. P., Macruz, P. D., Molina, L. C. A., & Scaliante, M. H. N. O. (2022). Hydroxychloroquine adsorption in aqueous medium using clinoptilolite zeolite. Water, Air and Soil Pollution, 233(8), 1–14. https://doi.org/10.1007/S11270-022-05787-3.
- 21. Bendjeffal, H., Ziati, M., Aloui, A., Mamine, H., Metidji, T., Djebli, A., & Bouhedja, Y. (2021). Adsorption and removal of hydroxychloroquine from aqueous media using Algerian kaolin: Full factorial optimisation, kinetic, thermodynamic, and equilibrium studies. Int. J. Environ. Anal. Chem., 103(9), 1982–2003. https://doi.org/10.1080/03067319.2021.1887162.
- 22. Zaouak, A., Jebali, S., Chouchane, H., & Jelassi, H. (2022). Impact of gamma-irradiation on the degradation and mineralization of hydroxychloroquine aqueous solutions. Int. J. Environ. Sci. Technol., 20, 6815–6824. https://doi.org/10.1007/S13762-022-04360-z.
- 23. Boujelbane, F., Nasr, K., Sadaoui, H., Bui, H. M., Gantri, F., & Mzoughi, N. (2022). Decomposition mechanism of hydroxychloroquine in aqueous solution by gamma irradiation. Chem. Pap., 76(3), 1777–1787. https://link.springer.com/article/10.1007/s11696-021-01969-1.
- 24. Han, B., Ko, J., Kim, J., Kim, Y., Chung, W., Makarov, I. E., Ponomarev, A. V., & Pikaev, A. K. (2002). Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot plant experiments. Radiat. Phys. Chem., 64(1), 53–59. https://doi.org/10.1016/S0969-806X(01)00452-2.
- 25. Sharpe, P. H. G., & Sehested, K. (1989). The dichromate dosimeter: A pulse-radiolysis study. Int. J. Radiat. Appl. Instrum. Pt. C-Radiat. Phys. Chem., 34(5), 763–768. https://doi.org/10.1016/1359-0197(89)90281-6.
- 26. McLaughlin, W. L., Al-Sheikhly, M., Farahani, M., & Hussmann, M. H. (1990). A sensitive dichromate dosimeter for the dose range, 0.2–3 kGy. Int. J. Radiat. Appl. Instrum. Pt. C-Radiat. Phys. Chem., 35(4/6), 716–723. https://doi.org/10.1016/1359-0197(90)90303-Y.
- 27. Šećerov, B., & Bačić, G. (2008). Comparison of dichromate and ethanol-chlorobenzene dosimeters in high dose radiation processing. Nukleonika, 53(3), 85–87.
- 28. Wojnárovits, L., & Takács, E. (2017). Wastewater treatment with ionizing radiation. J. Radioanal. Nucl. Chem., 311(2), 973–981. https://doi.org/10.1007/s10967-016-4869-3
- 29. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution. J. Phys. Chem. Ref. Data, 17(2), 513–886. https://doi.org/10.1063/1.555805.
- 30. Rath, M. C., Keny, S. J., Upadhyaya, H. P., & Adhikari, S. (2023). Free radical induced degradation and computational studies of hydroxychloroquine in aqueous solution. Radiat. Phys. Chem., 206, 110785. https://doi.org/10.1016/j.radphyschem.2023.110785.
- 31. Bors, W., Golenser, J., Chevion, M., & Saran, M. (1991). Reductive and oxidative radical reactions of selected antimalarial drugs. Oxidative Damage & Repair, 1991, 234–240. https://doi.org/10.1016/B978-0-08-041749-3.50046-2.
- 32. Kovács, K., Simon, Á., Balogh, G. T., Tóth, T., & Wojnárovits, L. (2020). High-energy ionizing radiation-induced degradation of amodiaquine in dilute aqueous solution: radical reactions and kinetics. Free Radic. Res., 54(2/3), 185–194. https://doi.org/10.1080/10715762.2020.1736579.
- 33. Rath, M. C., Keny, S. J., Upadhyaya, H. P., & Adhikari, S. (2023). Free radical induced degradation and computational studies of hydroxychloroquine in aqueous solution. Radiat. Phys. Chem., 206, 110785. https://doi.org/10.1016/j.radphyschem.2023.110785.
- 34. Zaouak, A., Noomen, A., & Jelassi, H. (2021). Degradation mechanism of losartan in aqueous solutions under the effect of gamma radiation. Radiat. Phys. Chem., 184, 109435. https://doi.org/10.1016/j.radphyschem.2021.109435.
- 35. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 4(1), 762–787. https://doi.org/10.1016/J.JECE.2015.12.016.
- 36. Chu, L., & Wang, J. (2022). Treatment of oil-field produced wastewater by electron beam technology: Demulsification, disinfection and oil removal. J. Clean Prod., 378, 134532. https://doi.org/10.1016/J.JCLEPRO.2022.134532.
- 37. Wang, J., & Chu, L. (2016). Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview. Radiat. Phys. Chem., 125, 56–64. https://doi.org/10.1016/j.radphyschem.2016.03.012.
- 38. Warhurst, D. C., Steele, J. C. P., Adagu, I. S., Craig, J. C., & Cullander, C. (2003). Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J. Antimicrob. Chemother., 52(2), 188–193. https://doi.org/10.1093/JAC/DKG319.
- 39. Klouda, C. B., & Stone, W. L. (2020). Oxidative stress, proton fluxes, and chloroquine/hydroxychloroquine treatment for COVID-19. Antioxidants, 9(9), 894. https://doi.org/10.3390/antiox9090894.
- 40. Catrinel, I. A., Mlak-Marginean, M., Savin, M., & Dăescu, M. (2022). The influence of the aqueous composition over degradation of hydroxychloroquine. UPB Sci. Bull. B, 84(3), 63–76.
- 41. Tominaga, F. K., Dos Santos Batista, A. P., Silva Costa Teixeira, A. C., & Borrely, S. I. (2018). Degradation of diclofenac by electron beam irradiaton: Toxicitiy removal, by-products identification and effect of another pharmaceutical compound. J. Environ. Chem. Eng., 6(4), 4605–4611. https://doi.org/10.1016/j.jece.2018.06.065.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e9c6205-7c75-49d0-a655-27893f95faaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.