PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fetal state assessment using fuzzy analysis of fetal heart rate signals - Agreement with the neonatal outcome

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fetal monitoring is based on analysis of fetal heart rate signal. Visual interpretation is difficult so computer-aided systems for quantitative analysis are commonly used. The clinical interpretation guidelines provided by FIGO (Fédération Internationale de Gynécologie et d'Obstétrique) were used to develop the weighted fuzzy scoring system for qualitative assessment of the fetal state. In this work, agreement of the fuzzy classification system with the neonatal outcome assessment was analyzed. Various datasets were evaluated, depending on interpretation method of the signals which were recorded from patients. The obtained results confirmed possibility of the efficient fetal state assessment using the fuzzy inference method proposed.
Twórcy
  • Division of Biomedical Electronics, Institute of Electronics, Silesian University of Technology, Gliwice, Poland
autor
  • Biomedical Signal Processing Department, Institute of Medical Technology and Equipment, Roosevelta 118, 41–800 Zabrze, Poland
autor
  • Biomedical Signal Processing Department, Institute of Medical Technology and Equipment, Roosevelta 118, 41–800 Zabrze, Poland
autor
  • Division of Biomedical Electronics, Institute of Electronics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Bernardes J, Costa-Pereira A, de Campos DA, van Geijn HP, Pereira-Leite L. Evaluation of interobserver agreement of cardiotocograms. Int J Gynaecol Obstet 1997; 57: 33–7.
  • [2] Jeżewski J, Wróbel J, Horoba K, Gacek A, Sikora J. Fetal heart rate variability: clinical experts versus computerized system interpretation. In: Proceedings of the 24th International Conference of the IEEE EMBS; 2002. pp. 1617–8.
  • [3] Signorini M, Magenes G, Cerutti S, Arduini D. Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans Biomed Eng 2003; 50: 365–74.
  • [4] Zadeh L. Fuzzy sets. Inf Control 1965; 8: 338–53.
  • [5] Skinner J, Garibaldi J, Ifeachor E. A fuzzy system for fetal heart rate assessment. In: Reusch B, editor. Computational intelligence. Lecture notes in computer science, Vol. 1625. Berlin, Heidelberg: Springer; 1999. pp. 20–9.
  • [6] Skinner J, Garibaldi J, Curnow J, Ifeachor E. Intelligent fetal heart rate analysis. In: Proceedings of the 1st International Conference of Advances in Medical Signal Information Processing; 2000. pp. 14–21.
  • [7] Keith R, Beckley S, Garibaldi J. A multicentre comparitive study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br J Obstet Gynaecol 1995; 102: 688–700.
  • [8] Arduini D, Giannini F, Magnes G, Signorini MG, Meloni P. Fuzzy logic in the management of new prenatal variables. In: Proceedings of the 5th World Congress of Perinatal Medicine, vol. 1; 2001. pp. 1211–6.
  • [9] Signorini M, de Angelis A, Magenes G, Sassi R, Arduini D, Cerutti S. Classification of fetal pathologies through fuzzy inference systems based on a multiparametric analysis of fetal heart rate. In: Proceedings of the IEEE International Conference of the Computers in Cardiology; 2000. pp. 435–8.
  • [10] Huang YP, Huang YH, Sandnes FE. A fuzzy inference method–based fetal distress monitoring system. In: Proceedings of the IEEE International Conference of the Industrial Electronics, vol. 1; 2006. pp. 55–60.
  • [11] Beksa M, Ozdemir K, Erkmen A, Karakas U. Assessment of antepartum fetal heart rate tracings using neural networks. In: van Geijn HP, Copray F, editors. A critical appraisal of fetal surveillance. Amsterdam: Elsevier Science; 1994. pp. 354–62.
  • [12] Jeżewski M, Wróbel J, Labaj P, Łęski J, Henzel N, Horoba K, et al. Some practical remarks on neural networks approach to fetal cardiotocograms classification. In: Proceedings of the 29th International Conference of the IEEE EMBS; 2007. pp. 5170–3.
  • [13] Jeżewski M, Wróbel J, Horoba K, Gacek A, Henzel N, Łęski J. The prediction of fetal outcome by applying neural network for evaluation of CTG records. In: Kurzyński M, Puchała E, editors. Computer recognition systems. Advances in soft computing series, Vol. 45. Berlin, Heidelberg: Springer; 2007. pp. 532–41.
  • [14] Magenes G, Signorini M, Arduini D. Classification of cardiotocographic records by neural networks. In: Proceedings of the IEEE International Joint Conference of the Neural Networks, vol. 3; 2000. pp. 637–41.
  • [15] Magenes G, Signorini M, Sassi R. Automatic diagnosis of fetal heart rate: comparison of different methodological approaches. In: Proceedings of the 23rd International Conference of the IEEE EMBS, vol. 2; 2001. pp. 1604–7.
  • [16] Noguchi Y, Matsumoto F, Maeda K, Nagasawa T. Neural network analysis and evaluation of the fetal heart rate. Algorithms 2009; 2: 19–30.
  • [17] Frize M, Ibrahim D, Seke H, Walker R, Odetayo M, Petrovic D, et al. Predicting clinical outcomes for newborns using two artificial intelligence approaches. In: Proceedings of the 26th International Conference of the IEEE EMBS, vol. 2; 2004. pp. 3202–5.
  • [18] Czabański R, Jeżewski M, Wróbel J, Horoba K, Jeżewski J. A neuro-fuzzy approach to the classification of fetal cardiotocograms. In: IFMBE Proceedings 14th International Conference on the NBC, vol. 20; 2008. pp. 446–9.
  • [19] Czabański R, Jeżewski M, Wróbel J, Jezewski J, Horoba K. Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and e–insensitive learning. IEEE Trans Inf Technol Biomed 2010; 14: 1062–74.
  • [20] Łęski J. e-insensitive fuzzy c-regression models: introduction to e-insensitive fuzzy modeling. IEEE Trans Syst Man Cybern – Part B Cybern 2004; 34: 4–15.
  • [21] Łęski J. TSK-fuzzy modeling based on e-insensitive learning. IEEE Trans Fuzzy Syst 2005; 13: 181–93.
  • [22] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20: 273–97.
  • [23] Georgoulas G, Stylios C, Groumpos P. Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans Biomed Eng 2006; 53: 875–84.
  • [24] Warrick P, Hamilton E, Precup D, Kearney R. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans Biomed Eng 2010; 57: 771–9.
  • [25] Krupa N, Mohd AM, Zahedi E, Ahmed S, Hassan F. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine. BioMed Eng OnLine 2011; 10: 1–15.
  • [26] Czabański R, Jeżewski J, Matonia A, Jeżewski M. Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia. Exp Syst Appl 2012. http://dx.doi.org/10.1016/j.eswa.2012.01.196.
  • [27] Czabański R, Wróbel J, Jeżewski J, Jeżewski M. Two-step analysis of the fetal heart rate signal as a predictor of distress. In: Pan JS, Chen SM, Nguyen NT, editors. Intelligent information and database systems. Lecture notes in computer science, Vol. 7197. Berlin, Heidelberg: Springer; 2012. pp. 431–8 (II).
  • [28] Mangasarian OL, Musicant DR. Lagrangian support vector machines. J Mach Learn Res 2001; 1: 161–77.
  • [29] Jeżewski M, Czabański R, Wróbel J, Horoba K. Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybern Biomed Eng 2010; 30: 39–47.
  • [30] Rooth G. Guidelines for the use of fetal monitoring. Int J Obstet Gynecol 1987; 25: 159–67.
  • [31] Jeżewski J, Wróbel J, Horoba K, Kupka T, Matonia A. Centralised fetal monitoring system with hardware-based data flow control. In: Proceedings of the 3rd International Conference of the MEDSIP; 2006. pp. 51–4.
  • [32] Hammacher K. The monitoring of the human fetal heart. Int J Obstet Gynecol 1972; 10: 173–5.
  • [33] Street S, Dawes GS, Moulden M, Redman CWG. Short–term variation in abnormal antenatal fetal heart rate records. Am J Obstet Gynecol 1991; 165: 515–23.
  • [34] Sikora J. Digital analysis of cardiotocographic traces for clinical fetal outcome prediction. Klin Perinat Ginekol 2001; 10: 57–88.
  • [35] Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J Math Psychol 1975; 12: 387–415.
  • [36] Czabański R, Jeżewski M, Szaszkowski Z, Kupka T, Wróbel J. Evaluation of predictive capabilities of quantitative cardiotocographic signal features. J Med Inform Technol 2010; 16: 11–8.
  • [37] Chung T, Mohajer M, Yang Z, Chang A, Sahota D. The prediction of fetal acidosis at birth by computerised analysis of intrapartum cardiotocography. Int J ObstetGynaecol 1995; 102: 454–60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e9b8f07-df61-42e3-822a-1c05e1ff0db6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.