PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The look-up algorithm of monitoring an object described by non-linear ordinary differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article proposes an adaptive algorithm that generates all object signals, including those for which measurements are not performed due to the difficulties associated with on-line measurements. The algorithm is modeled on the idea of the Kalman filter using its equation, however, the selection of gains is optimized in a different way, i.e. the constant values depend on the adopted ranges of adaptation errors. Moreover, the knowledge of the statistics of all noise signals is not imposed and there is no linearity constraint. This approach allowed to reduce the complexity of calculations. This algorithm can be used in real-time systems to generate signals of objects described by non-linear differential equations and it is universal, which allows it to be used for various objects. In the conducted research, on the example of a biochemically contaminated river, only easily measurable signals were used to generated the object signals, and in addition, in the case of absence some measurements, the functioning of the algorithm did not destabilize.
Rocznik
Strony
art. no. e144603
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institute of Technical Engineering, The State University of Technology and Economics in Jaroslaw, Czarnieckiego 16, 37-500 Jarosław, Poland
  • Institute of Technical Engineering, The State University of Technology and Economics in Jaroslaw, Czarnieckiego 16, 37-500 Jarosław, Poland
  • Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-959 Rzeszów, Poland
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszów, Poland
Bibliografia
  • [1] P. Hawro, “Adaptive algorithms for signal estimation in the monitoring system of objects described by non-linear ordinary differential equations,” Ph.D. dissertation, Faculty of Computer Science, Electronics and Telecommunications, Kraków, 2020.
  • [2] M. Marselina, A. Sabar, and N. Fahimah, “Spatial and temporal assessment of surface water quality using water quality index the Saguling Reservoir, Indonesia,” J. Water Land Dev., vol. 49, pp. 111–120, 2021.
  • [3] E. Novita, H.A. Pradana, B.H. Purnomo, and A.I. Puspitasari, “River water quality assessment in East Java, Indonesia,” J. Water Land Dev., vol. 47, no. 1, pp. 135–141, 2020.
  • [4] M.C. Obeta, U.P. Okafor, and C.F. Nwankwo, “Influence of discharged industrial effluents on the parameters of surface water in Onitsha urban area, southeastern Nigeria,” J. Water Land Dev., vol. 42, no. 1, pp. 136–142, 2019.
  • [5] A. Steinhoff-Wrześniewska, M. Strzelczyk, and M. Helis, “Identification of catchment areas with nitrogen pollution risk for lowland river water quality,” vol. 48, no. 2, pp. 53–64, 2022.
  • [6] A.M. Meyer, C. Klein, E. Fünfrocken, R. Kautenburger, and H.P. Beck, “Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers,” Sci. Total Environ., vol. 651, pp. 2323–2333, Feb. 2019.
  • [7] T. Shu, M. Xia, J. Chen, and C. De Silva, “An energy efficient adaptive sampling algorithm in a sensor network for automated water quality monitoring,” Sensors, vol. 17, no. 11, p. 2551, 2017.
  • [8] I. Yaroshenko et al., “Real-Time Water Quality Monitoring with Chemical Sensors,” Sensors, vol. 20, no. 12, p. 3432, Jun. 2020.
  • [9] P. Villalobos et al., “A BOD monitoring disposable reactor with alginate-entrapped bacteria,” Bioprocess Biosyst. Eng., vol. 33, no. 8, pp. 961–970, 2010.
  • [10] Ł. Górski, K.F. Trzebuniak, and E. Malinowska, “Low BOD determination methods: The state-of-the-art,” Chem. Process Eng. – Inz. Chem. i Proces., vol. 33, no. 4, pp. 629–637, 2012.
  • [11] M. Morawiec and P. Kroplewski, “Nonadaptive estimation of the rotor speed in an adaptive full order observer of induction machine,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 973–981, 2020.
  • [12] A.U. Alam, D. Clyne, and M.J. Deen, “A Low-Cost Multi-Parameter Water Quality Monitoring System,” Sensors, vol. 21, no. 11, p. 3775, May 2021.
  • [13] Z. Di, M. Chang, and P. Guo, “Water Quality Evaluation of the Yangtze River in China Using Machine Learning Techniques and Data Monitoring on Different Time Scales,” Water, vol. 11, no. 2, p. 339, 2019.
  • [14] P. Hawro, T. Kwater, R. Pękala, and B. Twaróg, “Soft sensor with adaptive algorithm for filter gain correction in the online monitoring system of a polluted river,” Appl. Sci., vol. 9, no. 9, p. 1883, 2019.
  • [15] T. Kwater, P. Hawro, J. Bartman, and D. Mazur, “The algorithm of adaptive determination of amplification of the PD filter estimating object state on the basis of signal measurable on-line,” Arch. Control Sci., vol. 31, no. 1, pp. 129–143, 2021.
  • [16] P. Yu, J. Cao, V. Jegatheesan, and X. Du, “A Real-time BOD Estimation Method in Wastewater Treatment Process Based on an Optimized Extreme Learning Machine,” Appl. Sci., vol. 9, no. 3, p. 523, Feb. 2019.
  • [17] R. Sulistyowati, A. Suryowinoto, A. Fahruzi, and M. Faisal, “Prototype of the Monitoring System and Prevention of River Water Pollution Based on Android,” IOP Conf. Ser. Mater. Sci. Eng., vol. 462, p. 012028, Jan. 2019.
  • [18] S. Smoroń and S. Twardy, “Concentrations and loads of N-NO3, N-NH4, PO 4 and BOD5 in waters of the upper Dunajec (in the years 1985-1998),” J. Water Land Dev., vol. 10, no. 10, pp. 151–162, 2006.
  • [19] N. Siddique and F.U. Rehman, “Hybrid synchronization and parameter estimation of a complex chaotic network of permanent magnet synchronous motors using adaptive integral sliding mode control,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, pp. 1–9, 2021.
  • [20] A.L. Kowal and M. Świderska-Bróż, Oczyszczanie wody. Warszawa: Wydawnictwo Naukowe PWN, 2009.
  • [21] Z. Gomolka, B. Twarog, and E. Zeslawska, “State Analysis of the Water Quality in Rivers in Consideration of Diffusion Phenomenon,” Appl. Sci., vol. 12, no. 3, p. 1549, 2022.
  • [22] R. Szymkiewicz, Mathematical modeling of flows in rivers and canals. Warszawa: PWN, 2000.
  • [23] Z. Gomolka, B. Twarog, E. Zeslawska, A. Lewicki, and T. Kwater, “Using Artificial Neural Networks to Solve the Problem Represented by BOD and DO Indicators,” Water, vol. 10, no. 1, p. 4, Dec. 2017.
  • [24] K.E. Rudolph, “A New Approach to Linear Filtering and Prediction Problems,” Trans. ASME – J. Basic Eng., vol. 82, pp. 35–45, 1960.
  • [25] T. Chai and R.R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014.
  • [26] S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” Int. J. Forecast., vol. 32, no. 3, pp. 669–679, 2016.
  • [27] L.C. Ke, H.T. Van Trang, V.H. Liem, T.N. Tuong, and P.T. Duyen, “Assessment of surface water pollutant models of estuaries and coastal zone of Quang Ninh – Hai Phong using Spot-5 images,” Geod. Cartogr., vol. 64, no. 1, pp. 29–42, 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e99bf92-8525-4cff-bfa2-0172908470ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.