PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical properties of pseudobrookite Fe2TiO5 synthesized from ilmenite ore by co-precipitation route

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pseudobrookite (Fe2TiO5) is a semiconductor with numerous potential applications. Low-grade ilmenite ore has been used as an inexpensive source of Fe and Ti for preparation of Pseudobrookite. Ilmenite was first leached with 20% hydrochloric acid for 3 h at 70°C. Co-precipitation of soluble Fe and Ti from the rich filtrate was carried out at pH ≥ 9.1 followed by calcination at different temperatures (900-1300oC) for 2 h. X-ray diffraction patterns (XRD) showed that a single-phase nanocrystalline pseudobrookite powder was produced. The pH was a critical parameter for the evolution of formation the different sizes, structural morphology, and the magnetic properties of the product. Scanning electron microscope (SEM) images showed that particles synthesized at pH 11.2 contained more agglomerations and were more porous than those synthesized at pH 9.1. As the calcination temperature increases, the Fe2TiO5 changes from a small rod-like structure to an elongated rod-like structure, and finally to interconnected aggregated crystals. The magnetization of the synthesized Fe2TiO5 was measured using a vibrating sample magnetometer (VSM) and was found steadily increase with increasing calcination temperature from 1000 (≈9 emu/g) to 1300°C (16 emu/g). Such a large saturation of magnetization might be due to the high phase purity and well-defined crystallinity of Fe2TiO5.
Rocznik
Strony
290--300
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, Egypt
  • Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, Egypt
  • Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
  • Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
Bibliografia
  • ABDEL-AAL, E.A., MAHMOUD, M.H.H., SANAD, M.M.S., CRISCUOLI, A., FIGOLI, A., DRIOLI, E., 2010. Membrane contactor as a novel technique for separation of iron ions from ilmenite leachant. International Journal of Mineral Processing, International Journal of Mineral Processing. 96, 62-69.
  • ALJURAIDE, N.I., MOUSA, M.A.A., HESSIEN, M., QHATANI, M. ASHOUR, A., 2011. Structural properties of ferric pseudobrookite Fe2TiO5 powder prepared by a new method. International Journal of Nanoparticles. 4, 2-9
  • ATZMONY, U., GUREWITZ, E., MELAMUD, M., PINTO, H., SHAKED, H., GORODETSKY, G., HERMON, E., HORNREICH, R.M., SHTRIKMAN, S., WANKLYN, B., 1979. Anisotropic Spin-Glass Behavior in Fe2TiO5. Physical Review Letters. 43, 782-785.
  • BEYDAGHI, H., JAVANBAKHT, M., KOWSARI, E., 2016. Preparation and physicochemical performance study of proton exchange membranes based on phenyl sulfonated graphene oxide nano sheets decorated with iron titanate nanoparticles. Polymer. 87, 26-37.
  • BOROWIEC, K., GRAU, A., GUEGUIN, M., TURGEON, J., 2003. TiO2 containing product Including rutile, pseudo-brookite and ilmenite. US Patent No. 6531110(2003).
  • D.S., GINLEY, M.A. BUTLER,1977. The photo electrolysis of water using iron titanate anodes. Journal of Applied Physics, 48, 2019–2021.
  • DJURIC, Z.Z., ALEKSIC, O.S., NIKOLIC, M.V., LABUS, N., RADOVANOVIC, M. 2014. Lukovic, Structural and electrical properties of sintered Fe2O3/TiO2nanopowder mixtures. Ceramics international Ceramics International. 40, 15131-15141.
  • ENHESSARI, M., KARGAR, M., ETEMAD, L., PARVIZ, A., SAKHAEI, M., 2014. Structural, optical and magnetic properties of the Fe2TiO5 nanopowders. Journal of Experimental Nanoscience. 9, 167-176.
  • DONDI, M., MATTEUCCI, F., CRUCIANI, G., GASPAROTTO, G., TOBALDI, D.M., 2007. Pseudobrookite ceramic pigments: crystal structural, optical and technological properties. Solid State Sciences. 9, 362-369.
  • DROFENIK, M. GOLIČ, L. HANZ̆EL, D., KRAŠEVEC, V., PRODAN, A., BAKKER, M., KOLAR,D., 1981. A new monoclinic phase in the Fe2O3-TiO2 system. I. Structure determination and Mössbauer spectroscopy. Journal of Solid State Chemistry. 40, 47-51.
  • GENNARI, F.C., GAMBOA, J.J.A., PASQUEVICH, D.M., 1998. Formation of monoclinic Fe2TiO5 in the Fe2O3(s)–TiO2(s)–Cl2 (g) system. Journal of Materials Science Letters. 17, 697-700.
  • GUO, W.Q., MALUS, S., RYAN, D.H., ALTOUNIAN, Z., 1999. Crystal structure and cation distributions in the FeTi2O5-Fe2TiO5 solid solution series. Journal of Physics: Condensed Matter. 11, 6337-6346.
  • HANŽEL, D., DROFENIK, M. KRAŠEVEC, V. PRODAN, A. SEVŠEK, F., 1981. Mössbauer effect study of monoclinic Fe2 TiO5. Solid state communications. 40, 899-901.
  • HOOSHYARI, K., JAVANBAKHT, M., NAJI, L., ENHESSARI, M., 2014. Nanocomposite proton exchange membranes based on Nafion containing Fe2TiO5 nanoparticles in water and alcohol environments for PEMFC. Journal of Membrane Science. 454, 74-81.
  • HESSIEN M.M., RASHAD M.M. El-BARAWY K., 2008. Controlling the composition and magnetic properties of strontium hexa ferrite synthesized by co-precipitation method. Journal of Magnetism and Magnetic Materials.320, 336-343.
  • HESSIEN M.M., EL-MAGHRABY A., RASHAD M.M., 2015. Magnetic and coloring performances of Co2+ ion doped magnetite powders synthesized using isothermal gaseous reduction. Materials Technology: Advanced Performance Materials. 30, 70-75.
  • KOZUKA, H., KAJIMURA, M., 2001. Sol-gel preparation and photo electron chemical properties of Fe2TiO5 thin films. Journal of Sol-Gel Science and Technology. 22, 125-132.
  • LI, R., JIA, Y., BU, N., WU, J., ZHEN, Q., 2015. Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics. Journal of Alloys and Compounds. 643, 88-93.
  • LU, A.H., SALABAS, E.L., SCHÜTH F., 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 46, 1222-1244.
  • MADARE, M.A., SALVI, S.V., 2005. Magnetic behavior of lithiated Fe2TiO5. Turkish Journal of Physics. 29, 25-31.
  • MAHMOUD, M. H. H., AFIFI, A. A., IBRAHIM, I.A., 2004. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile. Hydrometallurgy. 73, 99-109.
  • MAHMOUD, M.H.H., 2016. A Study on nitrate ion reduction in water with zero-valent iron loaded nano-titania prepared from ilmenite ore. Oriental. Journal of Chemistry. 32, 1983-1992.
  • MAHMOUD, M.H.H., ISMAIL, A.A., SANAD, M.M.S., 2012. Developing a cost-effective synthesis of active iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chemical Engineering Journal. 187, 96-103.
  • MIN, K.M., PARK, K.S., LIM, A.H., KIM, J.C., KIM, D.W., 2012. Synthesis of pseudobrookite-type Fe2TiO5 nanoparticles and their Li-ion electro activity. Ceramics International. 38, 6009–6013.
  • MOSTAFA, N.Y., MAHMOUD, M.H.H., HEIBA, Z.K., 2013. Hydrolysis of TiOCl2 leached and purified from low-grade ilmenite mineral. Hydrometallurgy. 139, 88-94.
  • SHABANIKIA, A., JAVANBAKHT, M., SALAR AMOLI, H., HOOSHYARI, K., ENHESSARI, M., 2015. Novel nanocomposite membranes based on poly benzimidazole and Fe2TiO5 nanoparticles for proton exchange membrane fuel cells. Ionics. 21, 2227-2236.
  • SHIOJIRI, M., SEKIMOTO, S., MAEDA, T., IKEDA, Y., IWAUCHI, K., 1984. Crystal structure of Fe2TiO5. Physica Status Solidi A. 84, 55-64.
  • SINGH, R.S., ANSARI, T.H., SINGH, R.A., WANKLYN, B.M., WATT, B.E., 1995. Electrical transport properties of iron (III) titanate. Solid State Communications. 94, 1003-1007.
  • TASDEMIR, H.M., YASYERLI, S., YASYERLI, N., 2015. Selective catalytic oxidation of H2S to elemental sulfur over titanium based Ti–Fe, Ti–Cr and Ti–Zr catalysts. International Journal of Hydrogen Energy. 40, 9989-10001.
  • TILLOCA, G., 1991. Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solutions. Journal of Materials Science.26, 2809-2814
  • VOGEL, A.I., MENDHAM, J., 2000. Vogel's textbook of quantitative chemical analysis. Harlow, Prentice Hall.
  • GAO, X. M., LI, M. W., HOU, Y.L., WANG, C.Y. 2015. Characterisation of Fe2TiO5 nanocrystallites synthesised via homogeneous precipitation. Materials Research Innovations. 19, 1-6.
  • YU, R., LI, Z., WANG, D., LAI, X., XING, C., YANG, M., XING, X., 2010. Fe2TiO5/α-Fe2O3 nanocomposite hollow spheres with enhanced gas-sensing properties. Scripta Materialia. 63, 155-158.
  • MESÍKOVÁ, Z., ŠULCOVÁ, P., TROJAN, M., 2006. Yellow pigments based on Fe2TiO5 and TiO2. Journal of Thermal Analysis and Calorimetry. 83, 561-563.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e97f6c4-8977-47c3-97a9-cb3396fac574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.