Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Detekcja nieprawidłowości uziemienia w jednostce generator-transformator z wykorzystaniem transformaty falkowej i sieci neuronowej
Języki publikacji
Abstrakty
The aim of this paper is to detect the single line to ground fault on the unit generator- transformer. A new ground fault detection scheme based on the extraction of energy and statistical parameters from wavelet transform based neural network is proposed. The faulty current signals obtained from a simulation were decomposed through wavelet analysis into various approximations and details. The simulation of the unit generator-transformer was carried out using the Sim-PowerSystem Blockset of MATLAB. The energy and statistical parameters analysis involved measured of the dispersion factors (range and standard deviation) of wavelet coefficients. Regarding the ANN performance, the errors in the SLGfault detection of ANN were under 1 %. The results indicate that the proposed algorithm was accurate enough in differentiating a single line to ground fault and un-fault for a unit generator-transformer.
Przestawiono metodę detekcji nieprawidłowości w uziemieniu jednostki generator-transformator. W nowej metodzie wykorzystano transformatę falkową I sieć neuronową. Symulację przeproprowadzno wykorzystując Sim-PowerSystem Blockset of MATLAB. Uzyskano błąd pomiaru poniżej 1%.
Wydawca
Czasopismo
Rocznik
Tom
Strony
28--32
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Politeknik Negeri Ujung Pandang, South Sulawesi, Indonesia 90245
autor
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia(UTM), Skudai, Malaysia 81300
autor
- Politeknik Negeri Ujung Pandang, South Sulawesi, Indonesia
autor
- Politeknik Negeri Ujung Pandang, South Sulawesi, Indonesia
Bibliografia
- [1] Omar A.S, Youssef. Online Application of Wavelet Transforms to Power System Relaying. IEEE Transactions on Power Delivery 2003; 18: 1158-1165.
- [2] IEEE Std C37.102™-2006, IEEE Guide for AC Generator Protection.
- [3] J.C.Das. Power System Relaying. Wiley Encyclopedia of Electrical and Electronic Engineering, 1999.
- [4] A.R.Sultan & M.W.Mustafa. Ground Fault Protection Methods of a Generator Stator. Przeglad Elektrotechniczny 2013; 10: 225-229.
- [5] Silva.K.M, Souza.B.A, Brito.N.S.D. Fault Detection and Classification in Transmission Lines Based on Wavelet Transform and ANN. IEEE Transactions on Power Delivery 2006; 21 : 2058-2063.
- [6] Amir T, Mohammad-Reza M., & Abdolreza R. Fault Location Techniques in Power System based on Traveling Wave using Wavelet Analysis and GPS Timing. Przeglad Elektrotechniczny 2012; 6 : pp.347-350
- [7] H.Zhengyou, G.Shibin, C.Xiaoqin, Z.Jun, B.Zhiqian & Q.Qingquan. Study of a new method for power system transients classification based on wavelet entropy an neural network. Electrical Power and Energy Systems 2011; 33: 402-410.
- [8] Safty S.E, El-Zonkoly A. Applying wavelet entropy principle in fault classification. Electrical Power and Energy System 2009; 31: 604-607.
- [9] Pittner.S, Kamarthi.S.V. Feature Extraction From Wavelet Coefficients for Pattern Recognition Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 1999; 21: 83-88.
- [10] Rao.P.V.R, Gafoor SA. Wavelet ANN based stator ground fault protection scheme for turbo generators. Electric Power Components and Systems 2007; 35: 575-59.
- [11] Rahman, M.A, Ozgonenel O & Khan M.A. Wavelet transform based protection of stator faults in synchronous generators. Electric Power Components and Systems 2007; 36: 625-637.
- [12] Baqui I, Zamora I, mazon J & Buigues G. High impedance fault detection methodology using wavelet transform and neural network. Electrical Power System Research 2011; 81: 1325-1333
- [13] S.Changqin, Wang.D, Kong.F & Tse.P.W. Fault diagnosis of rotating machine based on statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement 2013; 46: 1551-1564.
- [14] Chul-Hwan Kim, Hyun Kim, Young-Hun Ko, Sung-Hyun Byun, Raj K. Aggarwal and Allan T. Johns. A Novel Fault-Detection Technique of High-Impedance Arcing Faults in Transmission Lines Using the Wavelet Transform. IEEE transactions on power delivery 2002; 17.
- [15] Robi Polikar. The Story if Wavelets. Iowa State University
- [16] Morchen, F. Time series feature extraction for data mining using DWT and DFT, Technical Report, No.33, Department of Mathematics and Computer Science, University of Marburg, Germany, 2003
- [17] Pham,T.V & Kubin,G. DWT-based classification of acousticphonetics classes and phonetic units. In proceeding of ICSLP’04 South Korea, 2004: 985-988.
- [18] Ekici, S., Yildirim S., Poyraz M. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition. Expert Systems with Applications 2008; 34: 2973-2944.
- [19] Viljoen C. Elementary Statistic Vol. 2 Pearson South Africa, 2000
- [20] Baqui I, Zamora I., Mazon J., & Buigues G. High impedance fault detection methodology using wavelet transform and artificial neural network. Electric Power System Research 2011; 81: 1325-1333.
- [21] MATLAB reference manual. The Mathworks Inc, 2012
- [22] Othman,M., Mahfout,M., & Linkens,D. Transmission line fault detection, classification, and location using an intelligent power system stabiliser. IEEE Int. Conf. Elect. Utility Deregulat 2004; 1: 360-365.
- [23] Coury,D.V., Oleskovicz,M., & Aggarwal,R. K. An ANN routine for fault detection, classification, and locating in transmission lines. Electric Power Component System 2002; 30: 1137-1149.
- [24] Reaz, M., Choong, F., Sulaiman, M., Mohd-Yasin, F., & Kamada, M. Expert system for power quality disturbance classifier. IEEE Trans. Power Delivery 2007; 22: 1979-1988.
- [25] Al-Shaher., M. Saleh, A.S & Sabry, M.M. Estimation of fault locating and fault resistance for single line-to-ground faults in multi ring distribution network using artificial neural network. Electric Power Component System 2009; 37: 697-713.
- [26] Jiabin Z., Ju T., Xiaoxing Z., & Jiagui T., Pattern recognition for partial discharge in GIS based on pulse coupled neural networks and wavelet packet decomposition, Przegląd Elektrotechniczny 2012; 5b : pp.44-47
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e95cf1f-2f78-4111-b6ef-0b54e95229fe