PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative analysis of signal processing and classification methods for different applications based on EEG signals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electroencephalogram (EEG) measures the neuronal activities in the form of electric currents that are generated due to the synchronized activity by a group of specialized pyramidal cells inside the brain. The study presents a brief comparison of various functional neuroimaging techniques, revealing the excellent neuroimaging capabilities of EEG signals such as high temporal resolution, inexpensiveness, portability, and non-invasiveness as compared to the other techniques such as positron emission tomography, magnetoencephalogram, func-tional magnetic resonance imaging, and transcranial magnetic stimulation. Different types of frequency bands associated with the brain signals are also being summarized. The main purpose of this literature survey is to cover the maximum possible applications of EEG signals based on computer-aided technologies, ranging from the diagnosis of various neurological disorders such as epilepsy, major depressive disorder, alcohol use disorder, and dementia to the monitoring of other applications such as motor imagery, identity authentication, emotion recognition, sleep stage classification, eye state detection, and drowsiness monitoring. After reviewing them, the comparative analysis of the publicly available EEG datasets and other local data acquisition methods, preprocessing techniques, feature extraction methods, and the result analysis through the classification models and statistical tests has been presented. Then the research gaps and future directions in the present studies have been summarized with the aim to inspire the readers to explore more opportunities on the current topic. Finally, the survey has been completed with the brief description about the studies exploring the fusion of brain signals from multiple modalities.
Twórcy
  • Computer Science and Engineering Department, Punjab Engineering College (Deemed to be University), Sector 12, Chandigarh, India
  • Computer Science and Engineering Department, Punjab Engineering College (Deemed to be University), Chandigarh, India
autor
  • Computer Science and Engineering Department, Punjab Engineering College (Deemed to be University), Chandigarh, India
Bibliografia
  • [1] La Vaque T. The history of EEG Hans Berger: psychophysiologist. A historical vignette. J Neurother 1999;3(2):1–9.
  • [2] Bronzino JD. Biomedical engineering handbook, vol. 2. CRC Press; 1999.
  • [3] Kandel ER, Schwartz JH, Jessell TM, D. of Biochemistry, Jessell MB, Siegelbaum S, et al. Principles of neural science, vol. 4. New York: McGraw-Hill; 2000.
  • [4] Beres AM. Time is of the essence: a review of electroencephalography (EEG) and event-related brain potentials (ERPS) in language research. Appl Psychophysiol Biofeedback 2017;42(4):247–55.
  • [5] Novik O, Smirnov F, Volgin M. Structures of the brain. Electromagnetic Geophysical Fields. Springer; 2019. p. 69–89.
  • [6] Das S, Tripathy D, Raheja JL. An insight to the human brain and EEG. Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG. Springer; 2019. p. 13–24.
  • [7] Teplan M, et al. Fundamentals of EEG measurement. Meas Sci Rev 2002;2(2):1–11.
  • [8] Da Silv FL. Electroencephalography: basic principles, clinical applications, and related fields. Lippencott Wlliams & Wilkins; 2005.
  • [9] Mumtaz W, Xia L, Ali SSA, Yasin MAM, Hussain M, Malik AS. Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed Signal Process Control 2017;31:108–15.
  • [10] Subasi A. Eeg signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 2007;32(4):1084–93.
  • [11] Zhang T, Chen W, Li M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 2018;38(3):519–34.
  • [12] Mumtaz W, Ali SSA, Yasin MAM, Malik AS. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med Biol Eng Comput 2018;56(2):233–46.
  • [13] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 2018;161:103–13.
  • [14] Anuragi A, Sisodia DS. Alcohol use disorder detection using EEG signal features and flexible analytical wavelet transform. Biomed Signal Process Control 2019;52:384–93.
  • [15] Mumtaz W, Kamel N, Saad MNbM, Ali SSA, Malik AS. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif Intell Med 2018;84:79–89.
  • [16] Yuvaraj R, Acharya UR, Hagiwara Y. A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals. Neural Comput Appl 2018;30 (4):1225–35.
  • [17] Yu H, Lei X, Song Z, Liu C, Wang J. Supervised network-based fuzzy learning of EEG signals for Alzheimer's disease identification. IEEE Trans Fuzzy Syst 2019.
  • [18] Ofner P, Müller-Putz GR. Movement target decoding from EEG and the corresponding discriminative sources: a preliminary study. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 1468–71.
  • [19] Müller-Putz GR, Ofner P, Schwarz A, Pereira J, Pinegger A, Dias CL, et al. Towards non-invasive EEG-based arm/hand- control in users with spinal cord injury. 2017 5th International Winter Conference on Brain–Computer Interface (BCI). IEEE; 2017. p. 63–5.
  • [20] Zeng Y, Wu Q, Yang K, Tong L, Yan B, Shu J, et al. EEG-based identity authentication framework using face rapid serial visual presentation with optimized channels. Sensors 2019;19(1):6.
  • [21] Chen J, Mao Z, Yao W, Huang Y. EEG-based biometric identification with convolutional neural network. Multimedia Tools Appl 2019;1–21.
  • [22] Wang Q, Zhao D, Wang Y, Hou X. Ensemble learning algorithm based on multi-parameters for sleep staging. Med Biol Eng Comput 2019;1–15.
  • [23] Blanco JA, Vanleer AC, Calibo TK, Firebaugh SL. Single-trial cognitive stress classification using portable wireless electroencephalography. Sensors 2019;19(3):499.
  • [24] Seo J, Laine TH, Sohn K-A. Machine learning approaches for boredom classification using EEG. J Amb Intell Human Comput 2019;1–16.
  • [25] Kaur B, Singh D, Roy PP. Eyes open and eyes close activity recognition using EEG signals. International Conference on Cognitive Computing and Information Processing. Springer; 2017. p. 3–9.
  • [26] Saghafi A, Tsokos CP, Goudarzi M, Farhidzadeh H. Random eye state change detection in real-time using EEG signals. Expert Syst Appl 2017;72:42–8.
  • [27] Chen L-l, Zhao Y, Zhang J, Zou J-z. Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst Appl 2015;42(21):7344–55.
  • [28] Brašic´ JR, Mohamed M. Human brain imaging of autism spectrum disorders. Imaging of the human brain in health and disease. Elsevier; 2014. p. 373–406.
  • [29] Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia. Trends Neurosci 2011;34(8):430–42.
  • [30] Crosson B, Ford A, McGregor KM, Meinzer M, Cheshkov S, Li X, et al. Functional imaging and related techniques: an introduction for rehabilitation researchers. J Rehabil Res Dev 2010;47(2). vii.
  • [31] Wong DF, Gründer G, Brašic´ JR. Brain imaging research: does the science serve clinical practice? Int Rev Psychiatry 2007;19(5):541–58.
  • [32] Malhi G, Lagopoulos J. Making sense of neuroimaging in psychiatry. Acta Psychiatr Scand 2008;117(2):100–17.
  • [33] Mier W, Mier D. Advantages in functional imaging of the brain. Front Human Neurosci 2015;9:249.
  • [34] Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 2000;1(1):73.
  • [35] He B, Yang L, Wilke C, Yuan H. Electrophysiological imaging of brain activity and connectivity – challenges and opportunities. IEEE Trans Biomed Eng 2011;58 (7):1918–31.
  • [36] Babiloni C, Pizzella V, Del Gratta C, Ferretti A, Romani GL. Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int Rev Neurobiol 2009;86:67–80.
  • [37] Braisby N. Cognitive psychology: a methods companion. Oxford University Press; 2005.
  • [38] Rossini PM, Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin 2004;15(1):263–306.
  • [39] Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. NeuroImage 2012;61(2):371–85.
  • [40] Sörnmo L, Laguna P. Bioelectrical signal processing in cardiac and neurological applications, vol. 8. Academic Press; 2005.
  • [41] Adrian ED, Matthews BH. The berger rhythm: potential changes from the occipital lobes in man. Brain 1934;57 (4):355–85.
  • [42] Walter WG, Dovey VJ. Electroencephalography in cases of sub-cortical tumour. J Neurol Neurosurg Psychiatry 1944;7 (3–4):57. Jul.
  • [43] Campisi P, La Rocca D. Brain waves for automatic biometric-based user recognition. IEEE Trans Inform Forensics Secur 2014;9(5):782–800.
  • [44] Kumar JS, Bhuvaneswari P. Analysis of electroencephalography (EEG) signals and its categorization – a study. Proc Eng 2012;38:2525–36.
  • [45] Michielli N, Acharya UR, Molinari F. Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 2019;106:71–81.
  • [46] Jiang D, Lu Y-n, Yu M, Yuanyuan W. Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and hmm-based refinement. Expert Syst Appl 2019;121:188–203.
  • [47] Atkinson J, Campos D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst Appl 2016;47:35–41.
  • [48] Jebelli H, Hwang S, Lee S. EEG-based workers' stress recognition at construction sites. Autom Constr 2018;93:315–24.
  • [49] Bachmann M, Päeske L, Kalev K, Aarma K, Lehtmets A, Ööpik P, et al. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput Methods Programs Biomed 2018;155:11–7.
  • [50] Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA. Automatic diagnosis of alcohol use disorder using EEG features. Knowl-Based Syst 2016;105:48–59.
  • [51] Ruiz-Gómez S, Gómez C, Poza J, Gutiérrez-Tobal G, Tola- Arribas M, Cano M, et al. Automated multiclass classification of spontaneous EEG activity in Alzheimer's disease and mild cognitive impairment. Entropy 2018;20 (1):35.
  • [52] Dauwan M, Linszen MM, Lemstra AW, Scheltens P, Stam CJ, Sommer IE. EEG-based neurophysiological indicators of hallucinations in Alzheimer's disease: comparison with dementia with Lewy bodies. Neurobiol Aging 2018;67:75–83.
  • [53] Zhang XL, Begleiter H, Porjesz B, Wang W, Litke A. Event related potentials during object recognition tasks. Brain Res Bull 1995;38(6):531–8.
  • [54] Patidar S, Pachori RB, Upadhyay A, Acharya UR. An integrated alcoholic index using tunable-q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl Soft Comput 2017;50:71–8.
  • [55] Faust O, Acharya R, Allen AR, Lin C. Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 2008;29(1):44–52.
  • [56] Rösler O, Suendermann D. A first step towards eye state prediction using EEG. Proc of the AIHLS; 2013.
  • [57] Zhou Z, Li P, Liu J, Dong W. A novel real-time EEG based eye state recognition system. International Conference on Communications and Networking in China. Springer; 2018. p. 175–83.
  • [58] Duneja A, Puyalnithi T, Vankadara MV, Chilamkurti N. Analysis of inter-concept dependencies in disease diagnostic cognitive maps using recurrent neural network and genetic algorithms in time series clinical data for targeted treatment. J Amb Intell Human Comput 2018;1–9.
  • [59] Reddy TK, Behera L. Online eye state recognition from EEG data using deep architectures. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE; 2016. p. 000712–7.
  • [60] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001;64(6):061907.
  • [61] Zhang T, Chen W, Li M. Classification of inter-ictal and ictal EEGs using multi-basis MODWPT, dimensionality reduction algorithms and LS-SVM: a comparative study. Biomed Signal Process Control 2019;47:240–51.
  • [62] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 2018;100:270–8.
  • [63] Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 2010;37(12):8659–66.
  • [64] Richhariya B, Tanveer M. Eeg signal classification using universum support vector machine. Expert Syst Appl 2018;106:169–82.
  • [65] Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015;26:56–64.
  • [66] Li M, Chen W, Zhang T. Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM. Biocybern Biomed Eng 2016;36(4):708–18.
  • [67] Ibrahim S, Djemal R, Alsuwailem A. Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybern Biomed Eng 2018;38(1):16–26.
  • [68] Wang X, Gong G, Li N. Automated recognition of epileptic EEG states using a combination of symlet wavelet processing, gradient boosting machine, and grid search optimizer. Sensors 2019;19(2):219.
  • [69] Andrzejak RG, Schindler K, Rummel C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E 2012;86(4):046206.
  • [70] Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya UR. A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput Appl 2018;29(8):47–57.
  • [71] Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard SC, Chen M, et al. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain 2016;139 (6):1713–22.
  • [72] Sudalaimani C, Sivakumaran N, Elizabeth TT, Rominus VS. Automated detection of the preseizure state in EEG signal using neural networks. Biocybern Biomed Eng 2019;39 (1):160–75.
  • [73] Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment. Massachusetts Institute of Technology; 2009 [Ph.D. Thesis].
  • [74] Quintero-Rincón A, Pereyra M, D'Giano C, Risk M, Batatia H. Fast statistical model-based classification of epileptic EEG signals. Biocybern Biomed Eng 2018;38 (4):877–89.
  • [75] Alhaddad MJ, Kamel MI, Malibary HM, Alsaggaf EA, Thabit K, Dahlwi F, et al. Diagnosis autism by fisher linear discriminant analysis flda via EEG. Int J Bio-Sci Bio-Technol 2012;4(2):45–54.
  • [76] BCI-competition-II, dataset III. Department of Medical Informatics, Institute for Biomedical Engineering, University of Technology Graz; 2004, http://www.bbci.de/competition/ii/.
  • [77] Chatterjee R, Maitra T, Islam SH, Hassan MM, Alamri A, Fortino G. A novel machine learning based feature selection for motor imagery EEG signal classification in internet of medical things environment. Fut Gen Comput Syst 2019;98:419–34.
  • [78] Chatterjee R, Datta A, Sanyal DK. Ensemble learning approach to motor imagery EEG signal classification. Machine Learning in Bio-Signal Analysis and Diagnostic Imaging. Elsevier; 2019. p. 183–208.
  • [79] Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, et al. Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 2011;3(1):18–31.
  • [80] Pandey P, Seeja K. Emotional state recognition with EEG signals using subject independent approach. Data Science and Big Data Analytics. Springer; 2019. p. 117–24.
  • [81] Pandey P, Seeja K. Subject-independent emotion detection from EEG signals using deep neural network. International Conference on Innovative Computing and Communications. Springer; 2019. p. 41–6.
  • [82] Blankertz B, Muller K-R, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, et al. The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 2006;14(2):153–9.
  • [83] Behri M, Subasi A, Qaisar SM. Comparison of machine learning methods for two class motor imagery tasks using EEG in brain–computer interface. 2018 Advances in Science and Engineering Technology International Conferences (ASET). IEEE; 2018. p. 1–5.
  • [84] Chaudhary S, Taran S, Bajaj V, Sengur A. Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 2019;19 (12):4494–500.
  • [85] Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. Bci2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 2004;51 (6):1034–43.
  • [86] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23): e215–20.
  • [87] Zhang X, Yao L, Zhang D, Wang X, Sheng QZ, Gu T. Multi-person brain activity recognition via comprehensive EEG signal analysis. Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. ACM; 2017. p. 28–37.
  • [88] Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan IA, et al. Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 2017;28 (16).
  • [89] Tian P, Hu J, Qi J, Ye X, Che D, Ding Y, et al. A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture. Biocybern Biomed Eng 2017;37(2):263–71.
  • [90] S. C. C. O. T. J. S. O. S. R. S. (JSSR), Hori T, Sugita Y, Koga E, Shirakawa S, Inoue K, et al. Proposed supplements and amendments to 'a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects', the rechtschaffen & kales (1968) standard. Psychiatry Clin Neurosci 2001;55(3):305–10.
  • [91] Mourtazaev M, Kemp B, Zwinderman A, Kamphuisen H. Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep 1995;18(7):557–64.
  • [92] Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberye JJ. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 2000;47(9):1185–94.
  • [93] Ichimaru Y, Moody G. Development of the polysomnographic database on CD-ROM. Psychiatry Clin Neurosci 1999;53(2):175–7.
  • [94] Correa AG, Orosco L, Laciar E. Automatic detection of drowsiness in EEG records based on multimodal analysis. Med Eng Phys 2014;36(2):244–9.
  • [95] Tripathy R, Acharya UR. Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybern Biomed Eng 2018;38(4):890–902.
  • [96] Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O'Connor GT, et al. The sleep heart health study: design, rationale, and methods. Sleep 1997;20(12):1077–85.
  • [97] Sors A, Bonnet S, Mirek S, Vercueil L, Payen J-F. A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed Signal Process Control 2018;42:107–14.
  • [98] Tylová L, Kukal J, Hubata-Vacek V, Vyšata O. Unbiased estimation of permutation entropy in EEG analysis for alzheimer's disease classification. Biomed Signal Process Control 2018;39:424–30.
  • [99] Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed 2013;109 (3):339–45.
  • [100] Sharma M, Achuth P, Deb D, Puthankattil SD, Acharya UR. An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn Syst Res 2018;52:508–20.
  • [101] Ding X, Yue X, Zheng R, Bi C, Li D, Yao G. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. J Affect Disord 2019;251:156–61.
  • [102] Lotfan S, Shahyad S, Khosrowabadi R, Mohammadi A, Hatef B. Support vector machine classification of brain states exposed to social stress test using EEG-based brain network measures. Biocybern Biomed Eng 2019;39(1):199–213.
  • [103] Pereira J, Ofner P, Müller-Putz GR. Goal-directed or aimless? EEG differences during the preparation of a reach-and-touch task. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 1488–91.
  • [104] Ofner P, Müller-Putz GR. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. IEEE Trans Biomed Eng 2014;62 (3):972–81.
  • [105] Ofner P, Schwarz A, Pereira J, Müller-Putz GR. Movements of the same upper limb can be classified from low-frequency time-domain EEG signals. Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future (June 2016); 2016.
  • [106] Akar SA, Kara S, Agambayev S, Bilgiç V. Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput Biol Med 2015;67:49–60.
  • [107] Singh MI, Singh M. Development of a real time emotion classifier based on evoked EEG. Biocybern Biomed Eng 2017;37(3):498–509.
  • [108] Kotowski K, Stapor K, Leski J, Kotas M. Validation of emotiv EPOC+ for extracting ERP correlates of emotional face processing. Biocybern Biomed Eng 2018;38(4):773–81.
  • [109] Öner M, Hu G. Analyzing one-channel EEG signals for detection of close and open eyes activities. 2013 Second IIAI International Conference on Advanced Applied Informatics. IEEE; 2013. p. 318–23.
  • [110] Karamacoska D, Barry RJ, Steiner GZ. Using principal components analysis to examine resting state EEG in relation to task performance. Psychophysiology 2019;56(5): e13327.
  • [111] Gao Z, Li S, Cai Q, Dang W, Yang Y, Mu C, et al. Relative wavelet entropy complex network for improving EEG-based fatigue driving classification. IEEE Trans Instrum Meas 2018.
  • [112] Ajami S, Mahnam A, Abootalebi V. Development of a practical high frequency brain-computer interface based on steady-state visual evoked potentials using a single channel of EEG. Biocybern Biomed Eng 2018;38(1):106–14.
  • [113] Abromavicius V, Serackis A. Eye and EEG activity markers for visual comfort level of images. Biocybern Biomed Eng 2018;38(4):810–8.
  • [114] Stehlin SA, Nguyen XP, Niemz MH. Eeg with a reduced number of electrodes: where to detect and how to improve visually, auditory and somatosensory evoked potentials. Biocybern Biomed Eng 2018;38(3):700–7.
  • [115] Grundlehner B, Mihajlović V. Ambulatory EEG monitoring; 2019.
  • [116] Jiang X, Bian G-B, Tian Z. Removal of artifacts from EEG signals: a review. Sensors 2019;19(5):987.
  • [117] Ghare PS, Paithane A. Human emotion recognition using non linear and non stationary EEG signal. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). IEEE; 2016. p. 1013–6.
  • [118] Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosc 2014.
  • [119] Borisagar KR, Thanki RM, Sedani BS. Fourier transform, short-time fourier transform, and wavelet transform. Speech enhancement techniques for digital hearing aids. Springer; 2019. p. 63–74.
  • [120] Polikar R. The wavelet tutorial – part I, 2nd ed.
  • [121] Sović A, Seršić D. Signal decomposition methods for reducing drawbacks of the DWT. Eng Rev 2012;32(2):70–7.
  • [122] Cohen I, Raz S, Malah D. Orthonormal shift-invariant wavelet packet decomposition and representation. Signal Process 1997;57(3):251–70.
  • [123] Selesnick IW. Wavelet transform with tunable q-factor. IEEE Trans Signal Process 2011;59(8):3560–75.
  • [124] Huang W, Sun H, Wang W. Resonance-based sparse signal decomposition and its application in mechanical fault diagnosis: a review. Sensors 2017;17(6):1279.
  • [125] Paraschiv-Ionescu A, Aminian K. Nonlinear analysis of physiological time series. Advanced biosignal processing. Springer; 2009. p. 307–33.
  • [126] Faust O, Bairy MG. Nonlinear analysis of physiological signals: a review. J Mech Med Biol 2012;12(04):1240015.
  • [127] Acar E, Schenker C, Levin-Schwartz Y, Calhoun VD, Adali T. Unraveling diagnostic biomarkers of schizophrenia through structure-revealing fusion of multi-modal neuroimaging data. Front Neurosci 2019;13:416.
  • [128] Lee M-H, Fazli S, Mehnert J, Lee S-W. Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI. Pattern Recogn 2015;48(8):2725–37.
  • [129] Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of alzheimer's disease. IEEE Trans Biomed Eng 2014;62(4):1132–40.
  • [130] Zhu Q, Xu X, Yuan N, Zhang Z, Guan D, Huang S-J, et al. Latent correlation embedded discriminative multi-modal data fusion. Signal Process 2020;107466.
  • [131] Hunyadi B, Van Paesschen W, De Vos M, Van Huffel S. Fusion of electroencephalography and functional magnetic resonance imaging to explore epileptic network activity. 2016 24th European Signal Processing Conference (EUSIPCO). IEEE; 2016. p. 240–4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e939105-1cd6-4cb8-a4ee-c6213946f97f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.