PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheology-based approach of design the dieless drawing processes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dieless drawing process is based on local heating and simultaneously controlled stretching of the workpiece and allows elongation of the workpiece without using a deforming die. This process is usually used for deformation of wires, tubes and bars. The disadvantage of the dieless drawing process is the unevenness of the product diameter along its length. The present paper shows that unevenness can be substantially reduced by dividing the process into several stages. After each stage complete recrystallization of the material must be guaranteed for restoration of plasticity. The value of the strain in each stage must correspond to the area of intensive hardening on the stress–strain curve of the processed material. Thus, the proposed approach is based on the use of the special features of rheology properties of the material. The proposed approach was validated on the example of laser dieless drawing of magnesium alloy tubes.
Rocznik
Strony
1309--1317
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] V. Weiss, R.A. Kot, Dieless wire drawing with transformation plasticity, Wire J. 9 (1969) 182–189.
  • [2] K.-S. Li, X.-F. Liu, Z.-Z. Shi, Review of research status and development direction of dieless drawing, Metall. Res. Technol. 113 (2016) 610, http://dx.doi.org/10.1051/metal/2016042.
  • [3] P. Tiernan, M.T. Hillery, An analysis of wire manufacture using the dieless drawing method, J. Manuf. Process. 10 (2008) 12–20.
  • [4] T. Furushima, K. Manabe, Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes, J. Mater. Process. Technol. 191 (2007) 59–63.
  • [5] R. Carolan, P. Tiernan, Computer controlled system for dieless drawing of tool steel bar, J. Mater. Process. Technol. 209 (2009) 3335–3342.
  • [6] Y. Li, N.R. Quick, A. Kar, Dieless laser drawing of fine metal wires, J. Mater. Process. Technol. 123 (2002) 451–458.
  • [7] T. Furushima, Y. Imagawa, S. Furusawa, K. Manabe, Deformation profile in rotary laser dieless drawing process for metal microtubes, Proc. Eng. 81 (2014) 700–705.
  • [8] S. Supriadi, T. Furushima, K.-I. Manabe, Development of precision profile control system with fuzzy model and correction function for tube dieless drawing, J. Solid Mech. Mater. Eng. 5 (12) (2011) 1059–1070.
  • [9] W. Soboyejo, Mechanical Properties of Engineered Materials, Marcel Deccert Inc, New York, Basel, 2006.
  • [10] R.N. Wright, E.A. Wright, Basic analysis of dieless drawing, Wire J. Int. 33 (2000) 138–143.
  • [11] Y.G. Li, Laser Micro-processing and Thermomechanical Modeling of Plasticity for Dieless Wire Drawing, University of Central Florida, Florida, 2002.
  • [12] Y. He, X.-F. Liu, J.-X. Xie, H.-G. Zhang, Processing limit maps for the stable deformation of dieless drawing, Int. J. Miner. Metall. Mater. 18 (3) (2011) 330, http://dx.doi.org/10.1007/s12613-011-0443-8.
  • [13] G.G. Shlomchack, I. Mamuzic, F. Vodopivec, Rheological similarity of metals and alloys, J. Mater. Process. Technol. 40 (1994) 315–325.
  • [14] A. Milenin, P. Kustra, M. Paćko, Mathematical model of warm drawing of MgCa0.8 alloy accounting for ductility of the material, Comput. Methods Mater. Sci. 10 (2010) 69–79.
  • [15] G. Slomchak, A. Milenin, I. Mamuzic, F. Vodopivec, A mathematical model of the formation of the plastic deformation zone in the rolling of rheologically complex metals and alloys, J. Mater. Process. Technol. 58 (2) (1996) 184–188.
  • [16] P. Kustra, A. Milenin, D. Byrska-Wojcik, O. Grydin, M. Schaper, The process of ultra-fine wire drawing for magnesium alloy with the guaranteed restoration of ductility between passes, J. Mater. Process. Technol. 247 (2017) 234–242. , http://dx.doi.org/10.1016/j.jmatprotec.2017.04.022.
  • [17] A. Milenin, P. Kustra, M. Pietrzyk, Physical and numerical modelling of wire drawing process of Mg alloys in heated dies accounting for recrystallization, Key Eng. Mater. 622–623 (2014) 651–658. , http://dx.doi.org/10.4028/www.scientific.net/KEM.622-623.651.
  • [18] A. Milenin, P. Kustra, D. Byrska-Wójcik, T. Furushima, Physical and numerical modelling of laser dieless drawing process of tubes from magnesium alloy, Proc. Eng. 207C (2017) 2352–2357. , http://dx.doi.org/10.1016/j.proeng.2017.10.1007.
  • [19] A. Milenin, Parallel FEM code for simulation of laser dieless drawing process of tubes, Comput. Methods Mater. Sci. 17 (4) (2017) 1–8.
  • [20] T. Furushima, A. Shirasaki, K. Manabe, Fabrication of noncircular multicore microtubes by superplastic dieless drawing process, J. Mater. Process. Technol. 214 (2014) 29–35.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e923ffc-08c5-4b37-9e86-1a7136551a66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.