PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, characterization and their antimicrobial activities of boron oxide/poly(Acrylic Acid) nanocomposites: thermal and antimicrobial properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Boron oxide (B2O3)/Poly(acrylic acid) (PAA) nanocomposites were synthesized by solution intercalation method, and characterized by Fourier transform infrared spectroscopy (FTIR-ATR), transmission electron microscopy (TEM), X-ray diffraction and thermogravimetric analysis (DTA/TG). The effect of boron oxide amount on the thermal stability of nanocomposites was investigated. Moreover, the antimicrobial activities of them were also determined by the serial dilution method against E. coli and S. aureus. XRD analysis showed that boron oxide was homogenously dispersed in polymer matrix; FTIR-ATR that there was interaction between PAA and boron oxide; and TEM that boron oxide particles had spherical structure, and dispersed in nano size in polymer matrix; DTA/TG that the thermal stability of polymers increased with the adding of boron oxide into polymer matrix, and changed the decomposition mechanism of PAA. B2O3/PAA nanocomposites exhibited higher decomposition temperature. The decomposition mechanisms of PAA and its nanocomposites occurred through three decomposition steps; dehydration, decarboxylation and chain scission. B2O3/PAA nanocomposites showed greater antimicrobial activity with increasing B2O3 amount.
Rocznik
Strony
28--36
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., tab.
Twórcy
autor
  • Balikesir University, Faculty of Science and Literature, Department of Chemistry, 10145 Balikesir, Turkey
autor
  • Balikesir University, Faculty of Science and Literature, Department of Chemistry, 10145 Balikesir, Turkey
autor
  • Balikesir University Faculty of Engineering, Department of Environmental Engineering 10145 Balikesir, Turkey
autor
  • Paşaalanı Mahallesi Karesi-Balıkesir, Turkey
autor
  • Balikesir University, Faculty of Science and Literature, Department of Chemistry, 10145 Balikesir, Turkey
Bibliografia
  • 1. Thomas V., Yallapu M.M., Sreedhar B., Bajpai S.K., A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid. Interface Sci., 315 (2007), 389–395.
  • 2. Turhan Y., Alp Z.G., Alkan M., Doğan M., Preparation and characterization of poly(vinylalcohol)/modified bentonite nanocomposites. Microporous and Mesoporous Mater., 174 (2013), 144–153.
  • 3. Hojjati B., Sui R., Charpentier P.A., Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer, 48 (2007), 5850-5858.
  • 4. Wisniewska M., Nosal-Wiercinska A., Dabrowska I., Szewczuk-Karpisz K., Effect of the solid pore size on the structure of polymer film at the metal oxide/polyacrylic acid solution interface – Temperature impact. Microporous and Mesoporous Mater., 175 (2013), 92–98.
  • 5. Bajpai M., Bajpai S.K., Gautam D. Investigation of regenerated cellulose/poly(acrylic acid) composite films for potential wound healing applications: A preliminary study. J. Appl. Chem., (2014), Article ID 325627.
  • 6. Hu H., Campos J., Nair P.K., Electrically conductive CuS–poly(acrylic acid) composite coatings. J. Mater. Res., 11(3) (1996), 739-745.
  • 7. Zhang S., Zhou Y.F., Nie W.Y., Song L.Y., Preparation of Fe3O4/chitosan/poly(acrylic acid) composite particles and its application in adsorbing copper ion (II). Cellulose, 19 (2012), 2081–2091.
  • 8. Lecerf N., Mathur S., Shen H., Veith M., Hufner S., Chemical vapour and sol-gel syntheses of nano-composites and -ceramics using metal-organic precursors. Scr. Mater., 44(8-9) (2001), 2157-2160.
  • 9. Kunitake N., Fujikawa S., Nanocopying as a means of 3D nanofabrication: scope and prospects. Aust J Chem., 56(10) (2003), 1001-1003.
  • 10. Lee T.W., Park O.O., Yoon J., Kim J.J., Polymer-layered silica nanocomposite light emitting devices. Adv. Mater. 13 (2001), 211-213.
  • 11. McEuen P.L., Bockrath M., Cobden D.H., Lu J.G., Nanotechnology: principles and fundamentals. Microelectron Eng., 47(4) (1999), 417-420.
  • 12. Rouhi J., Mahmud S., Naderi N., Raymond C.H., Mahmood M.R., Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett., 8 (2013), 364.
  • 13. Alizadeh M., Sharifianjazi F., Haghshenasjazi E., Aghakhani M., Rajabi L., Production of nanosized boron oxide powder by high-energy ball milling. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45 (2015), 11–14.
  • 14. Pittoni P.G., Chang Y.Y., Lin S.Y., Interpretation of the peculiar temperature dependence of surface tension for boron trioxide. J. Taiwan. Inst. Chem. Eng., 43 (2012), 852–859.
  • 15. Woods W.G., An Introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 102 (1994), 5-11.
  • 16. Turhan Y., Dogan M., Alkan M., Poly(vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties. Ind. Eng. Chem. Res., 49 (2010), 1503–1513.
  • 17. Töre İ., Ay N., The Characterization and production of amorphous boron oxide. 2. International Boron Congress. September 23-25, Eskişehir/TURKEY.
  • 18. Moon O.M., Kang B.C., Lee S.B., Boo J.H., Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films, 464–465 (2004), 164–169.
  • 19. Moharram M.A., Rabie S.M., El-Gendy H.M., IR spectra of -irradiated PAA–PAAm complex. J Appl. Polym. Sci., 85(8) (2002), 1619–1623.
  • 20. Mohammed A.M., Radia N.D., Controlled release from crosslinked polyacrylic acid as drug delivery theophylline. Irq. Nat. J. Chem., 45 (2012), 67-85.
  • 21. De la Fuente J.L., Wilhelm M., Spiess H.W., Madruga E.L., Fernandez-Garcia M., Cerrada M.L., Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer, 46 (2005), 4544–4553.
  • 22. McGaugh M.C., Kottle S., The thermal degradation of poly(acrylic acid). J. Polym. Sci. B., 5(9) (1967), 817–820.
  • 23. Dubinsky S., Grader G.S., Shter G.E., Silverstein M.S., Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym. Degrad. Stab., 86 (2004), 171-178.
  • 24. Kızılduman B.K., Alkan M., Doğan M., Turhan Y., Al-pillared-montmorillonite (AlPMt)/Poly(methylmethacrylate)(PMMA) nanocomposites: the effects of solvent types and synthesis methods. Adv. Mat. Sci., 17(3) (2017), 5-23.
  • 25. Kausar A., Ullah W., Muhammad B., Siddiq M., Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites. Adv. Mat. Sci., 14(4) (2014) 61-74.
  • 26. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 28 (2003), 1539–1641.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e8b1c93-9727-4d24-93ca-35d97ff523fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.