PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How to Select a Location and a Design of Measures on Land Drainage – A Case Study from the Czech Republic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new approach for sites prioritization and designing measures on land drainage was developed and tested on the 96.5 km2 Žejbro catchment (Czech Republic). The aim was to design an effective, mutually interconnected system of measures, on tiles, manholes, outlets as well as on ditches (s.c. main drainage facilities, MDF) that will increase water retention and storage in intensively farmed and tile-drained catchments and will reduce water pollution from subsurface non-point sources (drainage runoff). This approach consists of (I) selecting suitable sites using the Catchment Measures Need Index (CAMNI) method; (II) obtaining information on land drainage in the area of interest; (III) conducting a field survey and water quality monitoring; (IV) designing appropriate systems of measures; and (V) analysing the estimated costs of the proposed measures. Measures were proposed for fourteen sub-catchments that were selected based on the results of a CAMNI analysis and whether an MDF or a heavily modified stream is present. A total of 44 point measures, 62 areal measures, and 99 line measures were proposed. Implementation of these measures would reduce the load of N-NO3, a major pollutant from drainage runoff, by 44 tons per year (48%). From the financial point of view, these measures are not self-financing and the benefits do not cover the expected costs of their implementation and maintenance. However, these measures have a profound ecological and societal benefits which, when taken into account, make these measures suitable for implementation when (co-)financed from public budgets. Putting the presented approach into practice, for example, in the framework of complex land consolidations or by watershed management authorities, could significantly improve the condition and water regime of intensively drained agricultural landscapes.
Rocznik
Strony
43--57
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Research Institute for Soil and Water Conservation, v.v.i., Žabovřeská 250, 156 27 Prague 5, Zbraslav, Czech Republic
  • Research Institute for Soil and Water Conservation, v.v.i., Žabovřeská 250, 156 27 Prague 5, Zbraslav, Czech Republic
autor
  • Sweco, Hydroprojekt a.s., Táborská 31, 140 16, Prague 4, Czech Republic
  • GEOREAL spol. s r.o., Hálkova 12, 301 00 Plzeň, Czech Republic
autor
  • Research Institute for Soil and Water Conservation, v.v.i., Žabovřeská 250, 156 27 Prague 5, Zbraslav, Czech Republic
Bibliografia
  • 1. Addy K., Gold A.J., Christianson L.E., David M.B., Schipper L.A., Ratigan N.A. 2016. Denitrifying bioreactors for nitrate removal: A meta-analysis. Journal of Environmental Quality, 45(3), 873-881. http://dx.doi.org/10.2134/jeq2015.07.0399
  • 2. Brown C., Van Beinum W. 2009. Pesticide transport via sub-surface drains in Europe. Environmental Pollution, 157, 3314–3324.
  • 3. Carstensen M.V., Hashemi F., Hoffmann C.C., Zak D., Audet J., Kronvang B. 2020. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio, 49(11), 18201837. http://dx.doi.org/10.1007/s13280-020-01345-5
  • 4. Dollinger J., Dagès C., Bailly J.-S., Lagacherie P., Voltz M. 2015. Managing ditches for agroecological engineering of landscape. A review Agronomy for Sustainable Development, 35(3), 999-1020.
  • 5. Fabiani S., Vanino S., Napoli R., Zajíček A., Duffková R., Evangelou E., Nino P. 2020. Assessment of the economic and environmental sustainability of Variable Rate Technology (VRT) application in different wheat intensive European agricultural areas. A Water energy food nexus approach. Environmental Science and Policy, 114, 366-376.
  • 6. Fučík P., Hejduk T., Peterková J. 2014. Quantifying water pollution sources in a small tile-trained agricultural watershed. Clean Journal, 42, 698-709. http://dx.doi.org/10.1002/clen.201300929
  • 7. Fučík P., Zajíček A., Duffková R., Kvítek T. 2015. Water Quality of Agricultural Drainage Systems in the Czech Republic — Options for Its Improvement, In Research and Practices in Water Quality; Lee T.S.; InTech: Rijeka, 239-262. http://dx.doi.org/10.5772/59298. ISBN 978-100 953-51-2163-3.
  • 8. Fučík P., Zajíček A., Kaplická M., Duffková R., Peterková J., Maxová J., Takáčová Š. 2017. Incorporating rainfall-runoff events into nitrate-nitrogen and phosphorus load assessments for small tiledrained catchments. Water, 9, 712. http://dx.doi.org/10.3390/w9090712
  • 9. Goswami D., Kalita P.K., Cooke R.A.C., Mcisaac G.F. 2009. Nitrate-N loadings through subsurface environment to agricultural drainage ditches in two flat Midwestern (USA) watersheds. Agricultural Water Management, 96, 1021–1030.
  • 10. Hirt U., Hamman T., Meyer B.C. 2005. Mesoscalic estimation of nitrogen discharge via drainage systems. Limnologica – Ecology nad Manegement of Inland Waters, 35(3), 206-219.
  • 11. Hönigová I., Vačkář D., Lorencová E., Melichar J., Götzl M., Sonderegger G., Oušková V., Hošek M., Chobot K. 2012. Survey on grassland ecosystem services Report of the European Topic Centre on Biological Diversity. Nature conservation agency of the Czech Republic, 78.
  • 12. Janglová R., Kvítek T., Novák P. 2003. Soil infiltration capacity categorization based on geoinformatic processing of soil survey data. Soil and Water Scientific Studies, 2, 61–81.
  • 13. Kozelová I., Špulerová J., Miklósová V., Gerhátová K., Izakovičová Z., Kalivoda H., Kalivodová M., Kanka R. 2020. The role of artificial ditches and their buffer zones in intensively utilized agricultural landscape. Environmental Monitoring and Assessment, 192(10), 656. http://dx.doi.org/10.1007/s10661-020-08610-w
  • 14. Kroger R., Holland M.M., Moore M.T., Cooper C.M. 2008. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability. Journal of Environmental Quality, 37(1), 107-113. http://dx.doi.org/10.2134/jeq2006.0505
  • 15. Kulhavý Z., Doležal F., Fučík P., Kulhavý F., Kvítek T., Muzikář R., Soukup M., Švihla V. 2007. Management of agricultural drainage systems in the Czech Republic. Irrigation and Drainage, 56, 141149. http://dx.doi.org/10.1002/ird.339.
  • 16. Kulhavý Z., Fučík P., Tlapáková L., Soukup M., Čmelík M., Hejduk T., Marták P., Stehlík M., Pavel M. 2012. Guidelines for eliminating negative functions of drainage facilities in the landscape to support applicants for subsidies in the Priority Axes 1 and 6. Part A: Methodological guide for Czech ministry of environments, part B: Detailed analysis of the issue. (In Czech), Prague, 242.
  • 17. Kulhavý Z., Fučík P. 2015. Adaptation Option for Land Drainage Systems Toward Sustainable Agriculture and the Environment: A Czech Perspektive. Pol. J. Environ. Stud., 24(3), 1085-1102. http://dx.doi.org/10.15244/pjoes/34963
  • 18. Kulhavý Z., Pavel M. Kudrnová L., Fučík P., Dostál M., Zajíček A., Pelíšek I., Krása J., Duffková R. Novák P., Hejduk T. 2017. Catalogue of agricultural area source reduction measures for Type A action sheets (including drainage systems) with respect to critical area and watershed categorization. Prepared in the framework of the study for the Vltava River Basin State Enterprise. Preparation of Measure Sheets A of agricultural pollution sites for sub-basin plans, Prague, 163. (In Czech).
  • 19. Kvítek T., Žlábek P., Bystřický V., Fučík P., Lexa M., Gergel J., Novák P., Ondr P. 2009. Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Physics and Chemistry of the Earth, 34(8-9), 541-551. http://dx.doi.org/10.1016/j.pce.2008.07.003
  • 20. Lavrnić S., Nan X., Blasioli S., Braschi I., Anconelli S., Toscano A. 2020. Performance of a full scale constructed wetland as ecological practice for agricultural drainage water treatment in Northern Italy. Ecological Engineering, 154, http://dx.doi.org/10.1016/j.ecoleng.2020.10592
  • 21. Lüderitz V. 2004. Towards sustainable water resources management: A case study from Saxony‐Anhalt, Germany. Management of Environmental Quality, 15(1), 17-24. https://doi.org/10.1108/14777830410513568
  • 22. Novák P., Fučík P., Kulhavý Z., Zajíček A., Pelíšek I., Ptáčníková L., Dostál T., Krása J., Bauer M., Pavel M., Rosendorf P., Krátký M., Kvítek T. 2016. Preparation of Type A Action Sheets for agricultural pollution sites for sub-basin plans. Methodological guidance identification of critical points and categorisation of sites at risk of pollution from surface and subsurface agricultural sources for the whole territory of the Czech Republic in detail for the preparation of Type A action sheets. Certified methodology. VÚMOP, v.v.i., Prague, 69. (in Czech)
  • 23. Pavel M. et al. 2019. Catalogue of MDF revitalization measures. Output of the project New approaches for revitalization of main drainage facilities with connection to drainage systems in terms of water retention in the landscape, SWECO Hydroprojekt a.s., Prague, 55. (in Czech).
  • 24. Povilaitis A., Rudzianskaite A., Miseviciene S., Gasiunas V., Miseckaite O., Živatkauskiene I. 2018. Efficiency of drainage practices for improving water quality in Lithuania Transactions of the ASABE, 61(1), 179-196. http://dx.doi.org/10.13031/trans.12271
  • 25. Stoate C., Báldi A., Beja P., Boatman N.D., Herzon I., van Doorn A., de Snoo G.R., Rakosy L., Ramwell C. 2009. Ecological impacts of early 21st century agricultural change in Europe A review. Journal of Environmental Management, 91(1), 22-46. http://dx.doi.org/10.1016/j.jenvman.2009.07.005
  • 26. The EU Directorate General Environment. Catalogue of Natural Water Retention Measures – online: http://nwrm.eu/measures-catalogue
  • 27. The World Overview of Conservation Approaches and Technologies. Global Database on Sustainable Land Management – online: https://www.wocat.net/en/global-slm-database
  • 28. Tlapáková L., Žaloudík J., Kulhavý Z., Pelíšek I. 2015. Use of remote sensing for identification and description of subsurface drainage system condition. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(5), 1587-1599. http://dx.doi.org/10.11118/actaun201563051587
  • 29. Tlapáková L. 2017. Agricultural drainage systems in the Czech landscape Identification and functionality assessment by means of remote sensing. European Countryside, 9(1), 77-98. http://dx.doi.org/10.1515/euco-2017-0005
  • 30. Váchal J., Váchalová R., Vlčková Z., Koupilová M., Moravcová J. 2006. Anthropoecological zoning of farmland as a basis for land adjustment design. Ekológia, 25, 145–161.
  • 31. Vymazal J., Sochacki A., Fučík P., Šereš M., Kaplická M., Hnátková T., Chen Z. 2020. Constructed wetlands with subsurface flow for nitrogen removal from tile drainage. Ecological Engineering, 155. http://dx.doi.org/10.1016/j.ecoleng.2020.10594
  • 32. Worrall F., Burt T., Adamson J. 2003. Controls on the chemistry of runoff from an upland peat catchment. Hydrological processes 17(10), 2063-2083.
  • 33. Zajíček A., Pomije T., Kvítek T. 2016. Event water detection in tile drainage runoff using stable isotopes and a water temperature in small agricultural catchment in Bohemian-Moravian Highlands, Czech Republic. Environmental earth sciences, 75, 1-13. http://dx.doi.org/10.1007/s12665-016-5561.
  • 34. Zajíček A., Fučík P., Duffková R., Maxová J. 2017. How Does Targeted Grassing Of Arable Land Influence Drainage Water Quality And Farm Economic Indicators? International Journal of Environmental Impacts, 1(3), 344–352. http://dx.doi.org/10.2495/ EI-V1-N3-344-352
  • 35. Zajíček A., Fučík P., Kaplická M., Liška M., Maxová J., Dobiáš J. 2018. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions – the role of runoff components. Water Science and Technology, 77(7-8), 1879-1890. http://dx.doi.org/10.2166/wst.2018.068
  • 36. Zajíček A., Dostál T., Krása T., Hejduk T., Fučík P., Kulhavý Z., Bauer M., Pelíšek I., Jáchymová B., Devátý J., Rosendorf P., Pavel M., Vojtěchovský T., Kyzlíková E. 2018. Atlas of non-point pollution of waters in the Vltava River Basin. VÚMOP, Prague. atlaspvl.vumop.cz.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e884767-1095-41b8-a890-67c9abc04407
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.