PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification and Comparison of BPFC Techniques: A Review

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd i porównanie bezmostkowych korektorów współczynnika mocy
Języki publikacji
EN
Abstrakty
EN
Power factor correction (PFC) techniques play an important role in green power and energy-saving technology. Based on conventional boost PFC, many novel topologies and control strategies of bridgeless PFC(BPFC) have been proposed, and BPFC reduces the number of devices, the losses and improves the power density as well. In this paper, it discusses and investigates a variety of low conduction losses and high power factor performance of the BPFC topological structures and identifies their merits and limitations by comparing and analysing bridgeless boost PFC,bridgeless buck PFC ,bridgeless sepic PFC and Bridgeless cuk PFC. And the trends of bridgeless PFC techniques are analyzed in the meantime. For the selection, application, and the later structural optimization of Bridgeless PFC techniques which are used in the smart grid, distributed energy and green power and other equipments.
PL
W artykule przedstawiono omówienie badań nad bezmostkowym korektorem współczynnika mocy, mających na celu porównanie strat przewodzenia i skuteczności działania, dla różnych topologii układu. W pracy określono zalety i ograniczenia poszczególnych architektur oraz ich ewolucję. Porównano ich zastosowanie do sieci inteligentnych, energetyki rozproszonej i odnawialnej.
Rocznik
Strony
179--186
Opis fizyczny
Bibliogr. 39 poz., schem.
Twórcy
autor
  • School of Energy Science and Engineering, University of Electronic Science and Technology of China
autor
  • School of Energy Science and Engineering, University of Electronic Science and Technology of China
Bibliografia
  • [1] H.Wang, X.J. Yang,et al., “Thoretic Analysis and Experimental Study of Partial PFC Technology,” The World of Inverters. Shanghai, pp.45-50, 2008.
  • [2] M. M. Jovanovic and Y. Jang, “State-of-the-Art, Single-Phase, Active Power-Factor-Correction Techniques for High-Power Applications-An Overview,” IEEE Trans. on Ind. Electron., Vol. 52, No. 3, pp. 701-708, 2005.
  • [3] Y. C. Hsieh, T. C. Hsueh ,et al., “An Interleaved Boost Converter with Zero Voltage Transition,” IEEE Trans. on Power Electron., Vol. 24, No. 3, pp. .973-978, 2009.
  • [4] Dehong Xu, Jindong Zhang, ,et al., “Evaluation of output filter capacitor current ripples in single phase PFC converters,” IEEE Power Conversion Conf., PCC., Vol. 3, Osaka, Japan, pp. 1226 – 1231, 2002.
  • [5] Yang Xi-jun, Wang Han,et al., “Theoretic Analysis and Experimental Study of a Novel Bridgeless Partial Active PFC,” IEEE Electrical Machines and Systems Conf., pp. 1179-1184, Oct. 2008.
  • [6] F. Musavi, W. Eberle ,et al., “A High-Performance Single-Phase Bridgeless Interleaved PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers,” IEEE Trans. on Ind. Appl., Vol. 47, No. 4, pp. 1183-1143, 2011.
  • [7] F. Musavi, W. Eberle, et al., “A Phase Shifted Semi-Bridgeless Boost Power Factor Corrected Converter for Plug in Hybrid Electric Vehicle Battery Chargers,” IEEE Applied Power Electron. Conf. and Exposition, APEC, pp. 821-828, 2011.
  • [8] L. Huber, Yungtaek Jang, et al., “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Trans. on Power Electron., Vol. 23, No. 3, pp. 1381-1390, May. 2008.
  • [9] Yungtaek Jang and M. M. Jovanovic, “A Bridgeless PFC Boost Rectifier With Optimized Magnetic Utilization,” IEEE Trans. on Power Electron., Vol. 24, No. 1, pp. 85-93 Jan. 2009.
  • [10] Liu Gui-hua, Wang Wei and Xu Dian-guo, “Research On conventional PFC and bridgeless PFC in air conditioner,” IEEE Power Electron. and Motion Control Conf., IPEMC , pp. 666-669, July 2009.
  • [11] S. S. Darly, P. V. Ranjan, et al., “A Novel Dual Boost Rectifier for Power Factor Improvement,” International Conference on Electrical Energy Systems, pp. 121-127, 2011.
  • [12] B. Su, J. M. Zhang and Z.Y. Lu, “Totem-Pole Boost Bridgeless PFC Rectifier With Simple Zero-Current Detection and Full-Range ZVS Operating at the Boundary of DCM/CCM,” IEEE Trans. on Power Electron., Vol. 26, No. 2, pp. 427-435, Feb. 2011.
  • [13] B. Su and Z. Y. Lu, “An Interleaved Totem-Pole Boost Bridgeless Rectifier With Reduced Reverse-Recovery Problems For Power Factor Correction,” IEEE Trans. on Power Electron., Vol. 25, No. 6, pp. 1406-1415, Jun. 2010.
  • [14] H. Yao-Ching, H. Te-Chin and Y. Hau-Chen, “An interleaved boost converter with zero-voltage transition,” IEEE Trans. on Power Electron., Vol. 24, No. 4, pp. 973-978, Apr. 2009.
  • [15] W. Wei, L. Yim-Shu, ,et al., “Interleaved boost converter with zero diode reverse-recovery loss,” IEEE Trans. on Aerosp. Electron. Syst., Vol. 40, No. 4, pp. 1271-1285, Oct. 2004.
  • [16] Yang Fei, Ruan Xin-bo, et al.,“Design issues of interleaved critical conduction mode boost PFC converter with coupled inductor,” IEEE Energy conversion Congress and Exposition, ECCE, pp. 2245-2252, Nov. 2010.
  • [17] W. Y. Choi, J.M. Kwon, et al. “Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Reverse-Recovery Problems,” IEEE Trans. on Ind. Electron., Vol. 54, No. 2, pp. 769-780, Apr. 2007.
  • [18] Mohammad Mahdavi and Hosein Farzanehfard, “A New Zero Voltage Transition Bridgeless PFC with Reduced Conduction Losses,” Journal of Power Electronics, Vol. 9, No. 5, pp.708-717, Sept. 2009.
  • [19] J. P. GEGNER and C. Q. LEE, “Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode,” Proc. IEEE Power Electron. Spec. Conf. (PESC), pp. 196-202, 1996.
  • [20] W. Y. Choi, J. M. Kwon, et al., “Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction,” IET Power Electron., Vol. 1, No. 2, pp. 194-202, 2008.
  • [21] W. Y. Choi, J. M. Kwon, et al.,“An Improved Bridgeless PFC Boost-Doubler Rectifier With High-Efficiency,” IEEE Power Electron. Spec. Conf. (PESC), pp. 1309-1313, 2008.
  • [22] R. Haghi, M. R. Zolghadri, et al.,“Design of a Bridgeless PFC with Line-Modulated Fixed Off-Time Current Control and Zero-Voltage Switching,” IEEE International conference on Power Energy, pp. 129-134, 2010.
  • [23] Masoud Jabbari and Hosein Farzanehfard, “A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance,” Journal of Power Electronics, Vol. 9, No. 6, pp. 835-844, Nov. 2009.
  • [24] R. Haghi, M. R. Zolghadri and R. Beiranvand, “A Novel Zero-Voltage-Transition Bridgeless PFC With Reduced Conduction Losses,” IEEE Power Electron. Drive Systems and Technologies Conf., pp. 587-592, 2011.
  • [25] J. Biela, J. W. Kolar and G. Deboy, “Optimal Design of a Compact 99.3% Efficient Single-Phase PFC Rectifier,” IEEE Applied Power Electron. Conf. and Exposition, APEC, pp. 1397-1404, 2010.
  • [26] B. Su, J. M. Zhang and Z. Y. Lu, “Single Inductor Three-Level Boost Bridgeless PFC Rectifier with Nature Voltage Clamp,” IEEE Power Electron. Conf., pp. 2092-2097, 2010.
  • [27] W. Y. Choi, J. Y. Choi and J. S. Yoo, “Single-Stage Bridgeless Three-Level AC/DC Converter with Current Doubler Rectifier,” IEEE International Conference on Power Electronics, ECCE Asia the Shilla Jeju, Korea, pp. 2704-2708, 2011.
  • [28] M. R. Sahid and A. H. M. Yatim, “An isolated bridgeless AC-DC converter with high power factor,” IEEE International Conference on Power and Energy, Kuala Lumpur, Malaysia, pp. 791-796, Nov. 2010.
  • [29] Yungtaek Jang and Milan M. Jovanovic, “Bridgeless Buck PFC Rectifier,” Appl. Power Electron. Conf. and Exposition(APEC), pp. 23-29, 2010.
  • [30] Yungtaek Jang and Milan M. Jovanovic, “Bridgeless High-Power-Factor Buck Converter,” IEEE Trans. on Power Electron., Vol. 26, No. 2, pp. 602-611, Feb. 2011.
  • [31] R. Antonio, D. Abud,et al., “Evaluation of boost, sepic and cuk topologies as power factor correction stage in electronic ballast applications,” International Power Electron. Congress, Technical Proceeding, CIEP, pp. 51-55, Aug. 2002.
  • [32] Esam H. Ismail, “Bridgeless SEPIC Rectifier With Unity Power Factor and Reduced Conduction Losses,” IEEE Trans. on Ind. Electron., Vol. 56, No. 4, pp. 1147-1157, Apr. 2009.
  • [33] M. Mahdavi and H. Farzanehfard, “New Bridgeless PFC Converter with Reduced Components,” IEEE InternationalConference on Electronic Devices, Systems and Applications (ICEDSA), pp. 125-130, 2011.
  • [34] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC Rectifier With Reduced Components and Conduction Losses,” IEEE Trans. on Ind. Electron., Vol. 58, No. 9, pp. 4153-4160, Sep. 2011.
  • [35] M. R. Sahid, A. H. M. Yatim and Taufik Taufik, “A New AC-DC Converter Using Bridgeless SEPIC,” IEEE Conference on Industrial Electronics(IECON), pp. 286-290, 2010.
  • [36] A. A. Fardoun, E. H. Ismail, A. J. Sabzali and M. A. Al-Saffar, “A Comparison between Three Proposed Bridgeless Cuk Rectifiers and Conventional Topology for Power Factor Correction,” IEEE ICSET Kandy, Sri Lanka, , pp. 1-6, Dec. 2010.
  • [37] A. A. Fardoun, A. J. Sabzali, E. H. Ismail and M. A. Al-Saffar, “A New Bridgeless PFC Sepic and Cuk Rectifiers with Low Conduction and Switching Losses,” IEEE International Conference on Power Electronics and Drive Systerm, PEDS, pp. 550-556, 2009.
  • [38] A. J. Sabzali, E. H. Ismail, et al., “New Bridgeless DCM Sepic and Cuk PFC Rectifiers With Low Conduction and Switching Losses”, IEEE Trans. on Ind., Vol. 47, No. 2, pp. 873-881, Mar. 2011.
  • [39] M. R. Sahid, A. H. M. Yatim, et al.,“A bridgeless Cuk PFC converter,” IEEE Applied Power Electronics Colloquium (IAPEC), pp. 81-85, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e815786-a3aa-4650-8ae2-a1f43bde1f55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.