PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on Earth rotation and geodynamics in Poland in 2015–2018

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper summarizes the activity of the chosen Polish geodetic research teams in 2015–2018 in the fields of Earth: rotation, dynamics as well as magnetic field. It has been prepared for the needs of the presentation on the 27th International Union of Geodesy and Geodynamics General Assembly, Montreal, Canada. The part concerning Earth rotation is mostly focused on the use of modelling of diurnal and subdiurnal components of Earth rotation by including low frequency components of polar motion and UT1 in the analysis, study of free oscillations in Earth rotation derived from both space-geodetic observations of polar motion and the time variation of the second degree gravitational field coefficients derived from Satellite Laser Ranging (SLR) and Gravity Recovery and Climate Experiment (GRACE) observations, new methods of monitoring of Earth rotation, as well as studies on applications of the Ring Laser Gyroscope (RLG) for direct and continuous measurements of changes in Earth rotation and investigations of the hydrological excitation of polar motion. Much attention was devoted to the GRACE-derived gravity for explaining the influence of surface mass redistributions on polar motion. Monitoring of the geodynamical phenomena is divided into study on local and regional dynamics using permanent observations, investigation on tidal phenomena, as well as research on hydrological processes and sea level variation parts. Finally, the recent research conducted by Polish scientists on the Earth’s magnetic field is described.
Rocznik
Strony
65--86
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
  • Military University of Technology Faculty of Civil Engineering and Geodesy 2 Urbanowicza St., 00-908 Warsaw, Poland
  • Warsaw University of Technology Department of Geodesy and Geodetic Astronomy 1 Pl. Politechniki., 00-661 Warsaw, Poland
  • Space Research Centre Polish Academy of Sciences 18A Bartycka St., 00-001 Warsaw, Poland
  • Space Research Centre Polish Academy of Sciences 18A Bartycka St., 00-001 Warsaw, Poland
Bibliografia
  • [1] Bednarczyk, M., Kowalczyk, K. and Kowalczyk, A. (2018). Identification of pseudo-nodal points on the basis of precise leveling campaigns data and GNSS. Acta Geodynamica et Geomaterialia, 15(1), 5–16, DOI: 10.13168/AGG.2017.0028.
  • [2] Birylo, M., Nastula, J. and Kuczynska-Siehien, J. (2015a). The creation of flood risks model using a combination of satellite and meteorological models – the first step. Acta Geodynamica et Geomaterialia, 12(2), 151–156. DOI: 10.13168/AGG.2015.0018.
  • [3] Birylo, M., Sienkiewicz, J., Nastula, J. and Kuczynska-Siehien, J. (2015b). Combined model of gradiometric, meteorological and geological data for the purpose of water flow observation. 15th International Multidisciplinary Scientific GeoConference SGEM 2015 Conference Proceedings. ISBN 978-619-7105-36-0/ISSN 1314-2704, 3(1), 145–152, DOI: 10.5593/sgem2015B31.
  • [4] Birylo, M., Rzepecka, Z., Kuczynska-Siehien, J. and Nastula, J. (2018a). Analysis of water budget prediction accuracy using ARIMA models. Water Science & Technology: Water Supply, 18.3, 819–830. DOI: 10.2166/ws.2017.156.
  • [5] Birylo, M., Rzepecka, Z. and Nastula, J. (2018b). Assessment of the water budget from GLDAS model. Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics). DOI: 10.1109/BGC-Geomatics.2018.00022.
  • [6] Birylo, M. and Pajak, K. (2018). Statistical approach to the computation of an influence of the Yangtze Dam on gravity fluctuations. Proceedings of the 10th International Conference “Environmental Engineering”, Lithuania, 27–28 April 2017, eISSN 2029-7092, DOI: 10.3846/enviro.2017.165.
  • [7] Blachowski, J. (2016). Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: case study of the Walbrzych coal mine (SW Poland). Natura Hazards, 84(2), DOI: 10.1007/s11069-016-2470-2.
  • [8] Blachowski, J. and Herkt, P. (2018). Enhancement of the Walbrzych Hard Coal Mines Geographic Information System for its application in studies of mining deformations. XXIIIrd Autumn School of Geodesy E3S Web of Conferences 55, 00002(2018). DOI: 10.1051/e3sconf/20185500002.
  • [9] Blachowski, J., Jirankova, E., Lazecky, M., Kadlecik, P. and Milczarek,W. (2018). Application of satellite radar interferometry (PSInSAR) in analysis of secondary surface deformations in mining areas. Case studies from Czech republic and Poland. Acta Geodynamica et Geomaterialia, 15(2), 173–185. DOI: 10.13168/AGG.2018.0013.
  • [10] Bogusz, J. (2015). Geodetic aspects of GPS permanent stations non-linearity studies. Acta Geodynamica et Geomaterialia, 12(4), 323–333. DOI: 10.13168/AGG.2015.0033.
  • [11] Bogusz, J. and Klos, A. (2016). On the significance of periodic signals in noise analysis of GPS stadion coordinates time series. GPS Solutions, 20(4), 655–664. DOI: 10.1007/s10291-015-0478-9.
  • [12] Bogusz, J., Gruszczynska, M., Klos, A. and Gruszczynski, M. (2015a). Non-parametric estimation of seasonal variations in GPS-derived time series. International Association of Geodesy Symposia, 146, 227–233. DOI: 10.1007/1345_2015_191.
  • [13] Bogusz, J., Gruszczynski, M., Figurski, M. and Klos, A. (2015b). Spatio-temporal filtering for determination of common mode error in regional GNSS networks. Central European Journal of Geosciences, 7, 140–148. DOI: 10.1515/geo-2015-0021.
  • [14] Bogusz, J., Klos, A., Gruszczynska, M. and Gruszczynski, M. (2016). Towards reliable velocities of permanent GNSS stations. Reports on Geodesy and Geoinformatics, 100(1), 17–26. DOI: 10.1515/rgg-2016-0003.
  • [15] Braitenberg, C., Rossi, G., Bogusz, J., Crescentini, L., Crossley, D., Gross, R., Heki, K., Hinderer, J., Jahr, T., Meurers, B. and Schuh, H. (2018). Geodynamics and Earth Tides Observations from Global to Micro Scale: Introduction. Pure and Applied Geophysics, 175(5), 1595–1597. DOI: 10.1007/s00024-018-1875-0.
  • [16] Brzezinski, A. (2015). Report on activities of the Sub-Working Group 2 “Polar Motion and UT1” of the IAU/IAG Joint Working Group on Theory of Earth Rotation. Proc. Journées 2014 Systèmes de référence spatio-temporels, (eds.) Z. Malkin and N. Capitaine, Pulkovo Observatory, pp. 135–138.
  • [17] Brzezinski, A., Wielgosz, A. and Böhm, S. (2015). On application of the complex demodulation for monitoring Earth rotation: analysis of the nutation and long periodic UT1 data estimated by VieVS CD. Proc. Journées 2014 Systèmes de référence spatio-temporels, (eds.) Z. Malkin and N. Capitaine, Pulkovo Observatory, pp. 171–174.
  • [18] Brzezinski, A., Jozwik, M., Kaczorowski, M., Kalarus, M., Kasza, D., Kosek, W., Nastula, J., Szczerbowski, Z., Winska, M., Wronowski, R., Zdunek, R. and Zielinski, J.B. (2016a). Geodynamic research at the Department of Planetary Geodesy, SRC PAS. Reports on Geodesy and Geoinformatics, 100(1), 131–147. DOI: 10.1515/rgg-2016-0011.
  • [19] Brzezinski, A., Barlik, M., Andrasik, E., Izdebski, W., Kruczyk, M., Liwosz, T., Olszak, T., Pachuta, A., Pieniak M., Prochniewicz, D., Rajner, M., Szpunar, R., Tercjak, M. and Walo, J. (2016b). Geodetic and geodynamic studies at Department of Geodesy and Geodetic Astronomy WUT. Reports on Geodesy and Geoinformatics, 100(1), 165–200. DOI: 10.1515/rgg-2016-0013.
  • [20] Gruszczynska, M., Klos A., Gruszczynski, M. and Bogusz, J. (2016). Investigation on time-changeable seasonal components in the GPS time series: case study of Central Europe. Acta Geodynynamica et Geomaterialia, 13(3), 281–289. DOI: 10.13168/AGG.2016.0010.
  • [21] Gruszczynska, M., Rosat, S., Klos, A., Gruszczynski, M. and Bogusz, J. (2018). Multichannel Singular Spectrum Analysis in the estimates of common environmental effects affecting GPS observations. Pure and Applied Geophysics, 175(5), 1805–1822. DOI: 10.1007/s00024-018-1814-0.
  • [22] Gruszczynski, M., Klos, A. and Bogusz, J. (2016). Orthogonal transformation in extracting of common mode errors from continuous GPS networks. Acta Geodynamica et Geomaterialia, 13(3), 291–298. DOI: 10.13168/AGG.2016.0011.
  • [23] Gruszczynski, M., Klos, A. and Bogusz, J. (2018). A filtering of incomplete GNSS position time series with probabilistic Principal Component Analysis. Pure and Applied Geophysics, 175(5), 1841–1867. DOI: 10.1007/s00024-018-1856-3.
  • [24] Jagoda, M., Rutkowska, M. and Kraszewska, K. (2017a). The evaluation of time variability of tidal parameters h and l using SLR technique. Acta Geodynamica et Geomaterialia, 14(2), 153–158. DOI: 10.13168/AGG.2016.0036.
  • [25] Jagoda, M., Rutkowska, M. and Kraszewska, K. (2017b). Evaluation of time change of the Love k2 and k3 numbers using LAGEOS SLR data. Biuletyn WAT, LXVI(3). DOI: 10.5604/01.3001.0010.5393 (in Polish with English abstract).
  • [26] Jagoda, M., Rutkowska, M., Kraszewska, K. and Suchocki, C. (2018). Time changes of the potential Love tidal parameters k2 and k3. Studia Geophysica et Geodaetica, 62(4), 586–55. DOI: 10.1007/s11200-018-0610-8.
  • [27] Jurecka, M., Niedzielski, T. and Migon, P. (2016). A novel GIS-based tool for estimating present-day ocean reference depth using automatically processed gridded bathymetry data. Geomorphology, 260, 91–98. DOI: 10.1016/j.geomorph.2015.05.021.
  • [28] Kaczmarek, A., Cacon, S. and Weigel, J. (2016). Recent relative vertical movements in the tectonic zone of the Sudety Mts. Acta Geodynamica et Geomaterialia, 13(2), 177–184. DOI: 10.13168/AGG.2015.0055.
  • [29] Kaczmarek, A. and Kontny, B. (2018a). Estimates of seasonal signals in GNSS time series and environmental loading models with iterative least-squares estimation (ILSE) approach. Acta Geodynamica et Geomaterialia, 15(2), 131–141. DOI: 10.13168/AGG.2018.0009.
  • [30] Kaczmarek, A. and Kontny, B. (2018b). Identification of the noise model in the time series of GNSS stations coordinates using wavelet analysis. Remote Sensing, 10(10), 1611. DOI: 10.3390/rs10101611.
  • [31] Kaczorowski, M., Borkowski, A., Zdunek, R., Goluch, P., Kuchmister, J. and Cmielewski, K. (2015). Integrated tectonic studies: a new concept explored in the Geodynamic Laboratory of the Space Research Center in Ksiaz. Acta Geodynamica et Geomaterialia, 12(2), 169–179. DOI: 10.13168/AGG.2015.0012.
  • [32] Klos, A. and Bogusz, J. (2017). An evaluation of velocity estimates with a correlated noise: case study of IGS ITRF2014 European stations. Acta Geodynamica et Geomaterialia, 14(3), 255–265. DOI: 10.13168/AGG.2017.0009.
  • [33] Klos, A., Bos, M.S. and Bogusz, J. (2018a). Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS Solutions, 22(1). DOI: 10.1007/s10291-017-0686-6.
  • [34] Klos, A., Olivares, G., Teferle, F.N., Hunegnaw, A. and Bogusz, J. (2018b). On the combined effect of periodic signals and coloured noise on velocity uncertainties. GPS Solutions, 22(1). DOI: 10.1007/s10291-017-0674-x.
  • [35] Klos, A., Gruszczynska, M., Bos, M.S., Boy, J.-P. and Bogusz, J. (2018c). Estimates of vertical velocity errors for IGS ITRF2014 stations by applying the Improved Singular Spectrum Analysis method and environmental loading models. Pure and Applied Geophysics, 175(5), 1823–1840. DOI: 10.1007/s00024-017-1494-1.
  • [36] Kolaczek, B. and Nastula, J. (2016). Outline of the chronology of the developments of geodynamic investigations connected with earth rotation studies in the twentieth century: Authors’ perspective. International Association of Geodesy Symposia Series, 143, 503–511. DOI: 10.1007/1345_2015_86.
  • [37] Kosek, W., Niedzielski, T., Popinski, W., Zbylut, M. and Wn˛ek, A. (2016). Variable seasonal and subseasonal oscillations in sea level anomaly data and their impact on sea level prediction accuracy. [In:] Sneeuw N., Novák P., Crespi M., Sansò F. (eds.), VIII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia Series, 142, 47–50, DOI: 10.1007/1345_2015_74.
  • [38] Kowalczyk, K. (2015). The creation of a model of relative vertical crustal movement in the Polish territory on the basis of the data from Active Geodetic Network EUPOS (ASG EUPOS). Acta Geodynamica et Geomaterialia, 12(3), 215–225. DOI: 10.13168/AGG.2015.00220039.
  • [39] Kowalczyk, K. (2017). Testing the Correlation Between the Vertical Crustal Movements and Temperature Changes on the Example of Selected Vectors Permanent GNSS Stations. Proceedings of the 10th International Conference “Environmental Engineering”, Lithuania, 27-28 April 2017, eISSN 2029-7092, DOI: 10.3846/enviro.2017.205.
  • [40] Kowalczyk, K. and Bogusz, J. (2017). Application of PPP solution to determine the absolute vertical crustal movements: case study for northeastern Europe. Proceedings of the 10th International Conference “Environmental Engineering”, Lithuania, 27–28 April 2017, eISSN 2029-7092, DOI: 10.3846/enviro.2017.222.
  • [41] Kowalczyk, K. and Kuczynska-Siehien, J. (2017). Testing Correlation between Vertical Crustal Movements and Geoid Uplift for North Eastern Polish Border Areas. Proceedings of the 10th International Conference “Environmental Engineering”, Lithuania, 27–28 April 2017, eISSN 2029-7092, DOI: 10.3846/enviro.2017.206.
  • [42] Kowalczyk, K. and Kuczynska-Siehien, J. (2018). Testing the relationship between vertical crustal movement and geoid uplift for the Sudetes area. Annales Societatis Geologorum Poloniae, 88(1), 47–57. DOI: 10.14241/asgp.2018.004.
  • [43] Kowalczyk, K. and Rapinski, J. (2017). Robust network adjustment of vertical movements with GNSS data. Geofizika, 34(1), 45–65. DOI: 10.15233/gfz.2017.34.3.
  • [44] Kowalczyk, K. and Rapinski, J. (2018). Verification of a GNSS Time Series Discontinuity Detection Approach in Support of the Estimation of Vertical Crustal Movements. International Journal of Geo-Information, 7(4), 149. DOI: 10.3390/ijgi7040149.
  • [45] Kraszewska, K., Jagoda, M. and Rutkowska, M. (2016). Tectonic plate parameters estimated in the International Terrestrial Reference Frame ITRF2008 based on SLR stations. Acta Geophysica, 64(5), 1495–1512. DOI: 10.1515/acgeo-2016-0072.
  • [46] Kraszewska, K., Jagoda, M. and Rutkowska, M. (2018). Tectonic plates parameters estimated in International Terrestrial Reference Frame ITRF2008 based on DORIS stations. Acta Geophysica, 66(8), 509–521. DOI: 10.1007/s11600-018-0169-3.
  • [47] Lejba, P., Suchodolski, T., Schillak, S., Bartoszak, J., Michałek, P. and Zapa´snik, S. (2016). New face of the Borowiec Satellite Laser Ranging Station. Proceedings of the 20th International Workshop on Laser Ranging. GFZ Potsdam, Germany.
  • [48] Milczarek, W., Blachowski, J. and Grzempowski, P. (2017). Application of PSInSAR for assessment of surface deformations in post-mining area – case study of the formerWalbrzych hard coal basin (SW Poland). Acta Geodynamica et Geomaterialia, 14(1), 41–52. DOI: 10.13168/AGG.2016.0026.
  • [49] Nastula, J., Winska M. and Birylo M. (2015). Comparison of polar motion excitation functions computed from different sets of gravimetric coefficients. Proc. Journées 2014 “Systèmes De Référence Spatio-Temporels”, 187–190.
  • [50] Nastula, N. and Gross, R. (2015). Chandler wobble parameters from SLR and GRACE, Journal of Geophysical Research: Solid Earth, 120(6), 4474–4483. DOI: 10.1002/2014JB011825.
  • [51] Nastula, J., Salstein, D.A. and Popinski,W. (2016). Hydrological excitations of polar motion from GRACE gravity field solutions, C. Rizos, P. Willis (eds.). International Association of Geodesy Symposia Series, 143, 513–519. DOI: 10.1007/1345_2015_85.
  • [52] Niedzielski, T. (2017). Basic prediction methods in marine sciences. [In:] Green D.R., Payne J. (eds.), Marine and Coastal Resource Management – Principles and Practice. Routledge, Taylor & Francis Group, 121–141.
  • [53] Niedzielski, T., Jurecka, M. and Migon, P. (2016). Semi-Empirical Oceanic Depth – Age Relationship Inferred from Bathymetric Curve. Pure and Applied Geophysics, 173(5), 1829–1840. DOI: 10.1007/s00024-015-1204-9.
  • [54] Pasik, M., Adamek, A., Rajner, M., Kurczynski, Z., Pachuta, A., Wozniak, M., Bylina, P. and Próchniewicz, D. (2016). Participation of employees and students of the Faculty of Geodesy and Cartography in polar research, Reports on Geodesy and Geoinformatics, 100(1), 235–252, DOI: 10.1515/rgg-2016-0016.
  • [55] Pajak, K. (2017). Seasonal Baltic Sea level change from altimetry data. Proceedings of the 10th International Conference “Environmental Engineering”, eISSN 2029-7092 / eISBN 978-609-476-044-0, DOI: 10.3846/enviro.2017.223.
  • [56] Pajak, K. and Birylo, M. (2016). Evaluation of the Baltic Sea basin using satellite altimetry data. 16th International Multidisciplinary Scientific GeoConference SGEM 2016 Conference Proceedings, ISBN 978-619-7105-59-9/ISSN 1314-2704, 3(1), 297–304. DOI: 10.5593/SGEM2016/B31/S12.039.
  • [57] Pajak, K. and Birylo, M. (2017). Seasonal Baltic Sea level changes in coastal zone. Proceedings of the 10th World Congress on Water Resources and Environment At: “Panta Rhei”, Athens, Greece, Volume: European Water 59: 185–192, ISSN:1792-085X.
  • [58] Pajak, K. and Kowalczyk, K. (2018). Assessment of the Dynamics of Sea Level and Physical Phenomena in the Baltic Sea. Geodetski Vestnik, 62, 430–444. DOI: 10.15292/geodetski-vestnik. 2017.03.373-386.
  • [59] Rajner, M. (2018). Detection of ice mass variation using GNSS measurements at Svalbard. Journal of Geodynamics, 121, 20–25. DOI: 10.1016/j.jog.2018.06.001.
  • [60] Rajner, M. and Brzezinski, A. (2017). Free core nutation period inferred from the gravity measurements at Józefoslaw. Studia Geophysica et Geodaetica, 61(4), 639–656. DOI: 10.1007/s11200-016-0174-4.
  • [61] Rajner, M. and Liwosz, T. (2017). Analysis of seasonal position variation for selected GNSS sites in Poland using loading modelling and GRACE data. Geodesy and Geodynamics, 8(4), 253–259. DOI: /10.1016/j.geog.2017.04.001.
  • [62] Rapinski, J. and Kowalczyk, K. (2016). Detection of discontinuities in the height component of GNSS time series, Acta Geodynamica et Geomaterialia, 13(3), 315–320. DOI: 10.13168/AGG.2016.0013.
  • [63] Rzepecka, Z., Birylo, M. and Nastula, J. (2016a). Evaluation of the global land data assimilation system (GLDAS) data products essential for determination groundwater in Poland. 16th International Multidisciplinary Scientific GeoConference SGEM 2016 Conference Proceedings, ISBN 978-619-7105-59-9 / ISSN 1314-2704, 3(1), 313–320. DOI: 10.5593/SGEM2016/B31/S12.041.
  • [64] Rzepecka, Z., Birylo, M. and Nastula, J. (2016b). Assessment of resultant groundwater calculated on the basis of GRACE and GLDAS models. 16th International Multidisciplinary Scientific GeoConference SGEM 2016 Conference Proceedings, ISBN 978-619-7105-59-9/ISSN 1314-2704, 2(2), 125–132. DOI: 0.5593/SGEM2016/B22/S09.017.
  • [65] Rzepecka, Z., Birylo M., Kuczynska-Siehien, J., Nastula, J. and Pajak, K. (2017). Analysis of groundwater level variations and water balance in the area of the Sudety mountains. Acta Geodynamica et Geomaterialia, 14(3), 313–321. DOI: 10.13168/AGG.2017.0014.
  • [66] Sekowski, M., Dykowski, P. and Krynski, J. (2016). New iGrav superconducting gravimeter station In Central Europe at the Borowa Gora Geodetic-Geophysical Observatory. Geoinformation Issues, 8, 5–17.
  • [67] Sliwinska, J., Winska, M. and Nastula, J. (2018). Terrestrial water storage variations and their effect on polar motion. Acta Geophysica, 67(1), 17–39. DOI: 10.1007/s11600-018-0227-x.
  • [68] Swierczynska, M., Mizinski, B. and Niedzielski, T. (2016). Comparison of predictive skills offered by Prognocean, Prognocean Plus and MyOcean real-time sea level forecasting systems. Ocean Engineering, 113(2016), 44–56. DOI: 10.1016/j.oceaneng.2015.12.023.
  • [69] Szafarczyk, A. and Gawalkiewicz, R. (2016). Case study of the tensor analysis of ground deformations evaluated from geodetic measurements in a landslide area. Acta Geodynamica et Geomaterialia, 13(2), 213–222. DOI: 10.13168/AGG.2015.0003.
  • [70] Szafarczyk, A. and Gawalkiewicz, R. (2018). The Impact of the Rock Mass Deformation on Geometric Changes of a Historical Chimney in the Salt Mine of Bochnia. POL-VIET 2017 E3S Web of Conferences 35, 04002 (2018). DOI: 10.1051/e3sconf/20183504002.
  • [71] Szczerbowski, Z. (2016). Investigation on reflection of tectonic pattern in ASG EUPOS data in the Sudetes and adjacent areas. Reports on Geodesy and Geoinformatics, 102, 32–51. DOI: 10.1515/rgg-2016-0026.
  • [72] Szczerbowski, Z. and Piatkowska, A. (2015). Towards data integration and analysis in the detection of terrain surface deformation in the case of the Inowroclaw salt dome. Geomatics and Environmental Engineering, 9(4), 95–110. DOI: 10.7494/geom.2015.9.4.85.
  • [73] Szczerbowski, Z. and Jura, J. (2015). Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodynamica et Geomaterialia, 12(3), 237–248. DOI: 10.13168/AGG.2015.0023.
  • [74] Szczerbowski, Z., Kaczorowski, M.,Wiewiórka, J., Jó´zwik, M., Zdunek, R. and Kawalec, A. (2016). Monitoring of tectonically active area of Bochnia. Acta Geodynamica et Geomaterialia, 13(1), 59–67. DOI: 10.13168/AGG.2015.0044.
  • [75] Tercjak, M. and Brzezinski, A. (2017). On the Influence of Known Diurnal and Subdiurnal Signals in Polar Motion and UT1 on Ring Laser Gyroscope Observations. Pure and Applied Geophysics, 174(7), 2719–2731. DOI: 10.1007/s00024-017-1552-8.
  • [76] Tercjak, M., Böhm, J., Brzezinski, A., Gebauer, A., Klügel, T., Schreiber, U. and Schindelegger, M. (2015). Estimation of nutation rates from combination of ring laser and VLBI data, Proc. Journées 2014. Systèmes de référence spatio-temporels, (eds.) Z. Malkin and N. Capitaine, Pulkovo Observatory, 167–170.
  • [77] Wajs, J. and Milczarek, W. (2018). Detection of surface subsidence using SAR SENTINEL 1A imagery and the DInSAR method – a case study of the Belchatow open pit mine, Central Poland. XXIIIrd Autumn School of Geodesy, E3S Web of Conferences 55, 00004 (2018). DOI: 10.1051/e3sconf/20185500004.
  • [78] Welker, E. (2015). Polish magnetic measurements in the Baltic – history and prospects. Scientific Journal of Polish Naval Academy, 2(201), 75–85. DOI: 10.5604/0860889X.1172075.
  • [79] Welker, E. and Reda, J. (2016). Magnetic measurements, apparatus and meteorology. Geoinformation Issues, 8(1), 19–24.
  • [80] Welker, E., Reda, J. and Palka, A. (2017). Magnetic repeat station network on the Baltic Sea – why so needed? Annual of Navigation, 24(2017), 19–30. DOI: 10.1515/aon-2017-0002.
  • [81] Wielgosz, A., Tercjak, M. and Brzezinski, A. (2016a). Testing impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates. Reports on Geodesy and Geoinformatics, 101, 1–15. DOI: 10.1515/rgg-2016-0017.
  • [82] Wielgosz, A., Brzezinski, A. and Böhm, S. (2016b). Complex demodulation in monitoring Earth rotation by VLBI: testing the algorithm by analysis of long periodic EOP components. Artificial Satellites, 51(4), 135–147. DOI: 10.1515/arsa-2016-0012.
  • [83] Winska, M. (2016). Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals – g2 Climate Model. Artificial Satellites, 51(4), 107–122. DOI: 10.1515/arsa-2016-0010.
  • [84] Winska, M., Nastula, J. and Kolaczek, B. (2016). Assessment of the Global and Regional Land Hydrosphere and its Impact on the Balance of the Geophysical Excitation Function of Polar Motion. Acta Geophysica, 64(1), 270–292. DOI: 10.1515/acgeo-2015-0041.
  • [85] Winska, M., Nastula, J. and Salstein, D.A. (2017). Hydrological excitation of polar motion by different variables from the GLDAS model. Journal of Geodesy, 91(12), 1461–1473. DOI: 10.1007/s00190-017-1036-8.
  • [86] Walo, J., Próchniewicz, D., Olszak, T., Pachuta, A., Andrasik, E. and Szpunar, R. (2016). Geodynamic studies in the Pieniny Klippen Belt in 2004-2015, Acta Geodynamica et Geomaterialia, 13(4), 351–361. DOI: 10.13168/AGG.2016.0017.
  • [87] Zygmunt, M., Rajner, M. and Liwosz, T. (2016). Assessment of continental hydrosphere loading using GNSS measurements, Reports on Geodesy and Geoinformatics, 101, 36–53. DOI: 0.1515/rgg-2016-0020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e7aaf17-a3a6-441d-be4f-d5bdea6962af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.