PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LP-MOVPE growth and properties of high Si-doped InGaAs contact layer for quantum cascade laser applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents doping characteristics and properties of high Si-doped InGaAs epilayers lattice-matched to InP grown by low pressure metal-organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon-confinement layers in the construction of mid-infrared InAlAs/InGaAs/InP quantum-cascade lasers (QCLs). It requires the doping concentration of 1×10¹⁹ cm⁻³ and 1×10²⁰ cm⁻³ for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas-phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon-contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas-phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high-resolution X-ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.
Twórcy
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
autor
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
Bibliografia
  • 1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, “Quantum cascade laser”, Science 264, 553–556 (1994).
  • 2. C.A. Wang, R.K. Huang, A. Goyal, J.P. Donnelly, D.R. Calawa, S.G. Cann, F. O'Donnell, J.J. Plant, L.J. Missaggia, and G.W. Turner, “OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers”, J. Crystal Growth 310, 5191–5197 (2008).
  • 3. D.G. Revin, J.P. Commin, S.Y. Zhang, A.B. Krysa, K. Kennedy, and J.W. Cockburn, “InP-based midinfrared quantum cascade lasers for wavelengths below 4 μm”, IEEE J. Selected Topics in Quantum Electronics 17, 1417–1425 (2011).
  • 4. C. Sirtori, J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating 8.4 μm wavelength”, Appl. Phys. Lett. 66, 3242–3244 (1995).
  • 5. M. Bugajski, P. Gutowski, P. Karbownik, A. Kolek, G. Hałdaś, K. Pierściński, D. Pierścińska, J. KubackaTraczyk, I. Sankowska, A. Trajnerowicz, K. Kosiel, A. Szer- ling, J. Grzonka, K. Kurzydłowski, T. Slight, and W. Mere- dith, “Mid-IR quantum cascade lasers: Device technology and non-equilibrium Green's function modeling of electro-optical characteristics”, Phys. Status Solidi B 251, 1144–1157 (2014).
  • 6. T. Gresch, Gain and waveguide engineering in mid-infrared quantum cascade lasers, Doctoral Dissertation – Diss. ETH No. 18732, pp. 113–119, Zurich, 2009.
  • 7. M. Badura, K. Bielak, B. Ściana, D. Radziewicz, D. Pucicki, W. Dawidowski, and M. Tłaczała, „LP-MOVPE technology of InGaAs/GaAs heterostructures for application in Quantum Cascade Lasers”, Elektronika 11, 34–36 (2014).
  • 8. A.R. Clawson, T.T. Vu, and D.I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP”, J. Crystal Growth 83, 211–218 (1987).
  • 9. R.J. Field and S.K. Ghandhi, “Doping of gallium arsenide in a low pressure organometallic CVD system: I. Silane”, J. Crystal Growth 74, 543–550 (1986).
  • 10. F. Martin, Jean-Michel Hartmann, V. Carron, and Y. Le Tiec, Chemistry in Microelectronics, ISTE Ltd and John Wiley & Sons, Inc., London, Hoboken, 2013.
  • 11. L. Cheng-Wei, B. Lukose, M.O. Thompson, and P. Clancy, “Energetics of neutral Si dopants in InGaAs: An ab initio and semiempirical Tersoff model study”, Physical Review B 91, 094108-1-094108-11 (2015).
  • 12. H.C. Casey Jr. and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs”, J. Appl. Phys. 47, 631–643 (1976).
  • 13. E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev. 93, 632–633 (1954).
  • 14. T.S. Moss, “The interpretation of the properties of indium antimonide”, Proc. Phys. Soc. (London) B 67, 775–782 (1954).
  • 15. G.W. Charache, D.M. DePoy, J.E. Raynolds, P.F. Baldasaro, K.E. Miyano, T. Holden, F.H. Pollak, P.R. Sharps, M.L. Timmons, C.B. Geller, and W. Wolf, “Moss-Burstein and plasma reflection characteristics of heavily doped n-type InxGa1–xAs and InPyAs1–y”, J. Appl. Phys. 86, 452–458 (1999).
  • 16. J.C. Li, M. Sokolich, T. Hussain, and P.M. Asbeck, “Phy sicalmodelling of degenerately doped compound semiconductors for high-performance HBT design”, Solid-State Electron. 50, 1440–1449 (2006).
  • 17. M. Munoz, F.H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G.M. Cohen, “Burstein-Moss shift of n-doped In0.53Ga0.47As/InP”, Phys. Rev. B 63, 233302-1-233302-3 (2001).
  • 18. A. Tsukernik, D. Cheskis, O. Potashnik, A. Palevski, S. Barad, S. Luryi, and A. Cho, “Anomalous behaviour of the Fermi energy in heavily tin-doped InGaAs”, Eur. Phys. J. B 23, 341–344 (2001).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e78325f-0dfe-400a-9b97-8fe0b355979d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.