PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Brief Review of Recent Developments in the Integration of Deep Learning with GIS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction of Deep Learning (DL) methods with Geographical Information System (GIS) provides the opportunity to obtain new insights into environmental processes through the spatial, temporal and spectral resolutions as well as data integration. The two technologies may be connected to form a dynamic system that is incredibly well adapted to the evaluation of environmental conditions through the interrelationships of texture, size, pattern, and process. This perspective has acquired popularity in multiple disciplines. GIS is significantly dependant on processors, particularly for 3D calculations, map rendering, and route calculation whereas DL can process huge amounts of data. DL has received a lot of attention recently as a technology with a plethora of promising results. Furthermore, the growing use of DL methods in a variety of disciplines, including GIS, is evident. This study tries to provide a brief overview of the use of DL methods in GIS. This paper introduces the essential DL concepts relevant to GIS, the majority of which have been published in recent years. This research explores remote sensing applications and technologies in areas such as mapping, hydrological modelling, disaster management, and transportation route planning. Finally, conclusions on contemporary framework methodologies and suggestions for further studies are provided.
Słowa kluczowe
Rocznik
Strony
21--38
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
  • Research Scholar, Centre for Water Resources, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, India
  • Centre for Water Resources, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, India
Bibliografia
  • 1. Liu Y., Chen X., Wang Z., Wang Z.J., Ward R.K., Wang X.: Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion, vol. 42, 2018, pp. 158–173. https://doi.org/10.1016/j.inffus.2017.10.007.
  • 2. Zhang L., Zhang L., Du B.: Deep learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, 2016, pp. 22–40. https://doi.org/10.1109/MGRS.2016.2540798.
  • 3. Ma L., Liu Y., Zhang X., Ye Y., Yin G., Johnson B.: Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 152, 2019, pp. 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015.
  • 4. Zhu X.X., Tuia D., Mou L., Xia G., Zhang L., Xu F., Fraundorfer F.: Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, 2017, pp. 8–36. https://doi.org/10.1109/MGRS.2017.2762307.
  • 5. Ball J.E., Anderson D.T., Chan C.S.: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. Journal of Applied Remote Sensing, vol. 11(4), 2017, 042609. https://doi.org/10.1117/1.JRS.11.042609.
  • 6. Abdi A.M.: Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, vol. 57(1), 2020, pp. 1–20. https://doi.org/10.1080/15481603.2019.1650447.
  • 7. Key J., Maslanik J.A., Schweiger A.J.: Classification of Merged AVHRR and SMMR Arctic Data with Neural Networks. Photogrammetric Engineering & Remote Sensing, vol. 55(9), 1989, pp. 1331–1338.
  • 8. Hepner G.F., Logan T., Ritter N., Bryant N.: Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogrammetric Engineering & Remote Sensing, vol. 56, no. 4, 1990, pp. 469–473.
  • 9. Benediktsson I.A., Swain P.H., Ersoy O.K.: Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, vol. 28, 1990, pp. 540–552. https://doi.org/10.1109/TGRS.1990.572944.
  • 10. Bischof H., Schneider W., Pinz A.J.: Multispectral classification of Landsat-images using neural networks. IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 3, 1992, pp. 482–490. https://doi.org/10.1109/36.142926.
  • 11. Kanellopoulos I., Varfis A., Wilkinson G.G., Mégier J.: Land-cover discrimination in SPOT HRV imagery using an artificial neural network – a 20-class experiment. International Journal of Remote Sensing, vol. 13, no. 5, 1992, pp. 917–924. https://doi.org/10.1080/01431169208904164.
  • 12. Downey I.D., Power C.H., Kanellopoulos I., Wilkinson G.G.: A performance comparison of Landsat Thematic mapper land cover classification based on neural network techniques and traditional maximum likelihood algorithms and minimum distance algorithms. [in:] Proceeding of the Annual Conference of the Remote Sensing Society, The Remote Sensing Society, Nottingham 1992, pp. 518–528.
  • 13. Civco D.L.: Artificial Neural Networks for Land Cover Classification and Mapping. International Journal of Geographical Information Systems, vol. 7, 1993, pp. 173–186. https://doi.org/10.1080/02693799308901949.
  • 14. Yoshida T., Omatu S.: Neural network approach to land cover mapping. IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 5, 1994, pp. 1103–1109. https://doi.org/10.1109/36.312899.
  • 15. Yang Y., Rosenbaum M.S.: Artificial neural networks linked to GIS for determining sedimentology in harbours. Journal of Petroleum Science and Engineering, vol. 29(3–4), pp. 213–220. https://doi.org/10.1016/S0920-4105(01)00091-2.
  • 16. Weng Q.: Remote Sensing and GIS Integration. McGraw-Hill Professional Publishing, 2009.
  • 17. Wilkinson C.R., Chou L.M., Gomez E., Ridzwan A.R., Soekarno S., Sudara S.: Status of coral reefs in Southeast Asia: threats and responses. [in:] Gins- burg R.N. (ed.), Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards and History, June 10, 11, 1993, Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami 1994, pp. 311–317.
  • 18. Wilkinson G.G.: A review of current issues in the integration of GIS and remote sensing data. International Journal of Geographical Information Systems, vol. 10(1), 1996, pp. 85–101. https://doi.org/10.1080/02693799608902068.
  • 19. Walsh S.J., Butler D.R., Malanson G.P.: An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective. Geomorphology, vol. 21(3–4), 1998, pp. 183–205. https://doi.org/10.1016/S0169-555X(97)00057-3.
  • 20. Hinton J.C.: GIS and remote sensing integration for environmental applications. International Journal of Geographical Information Systems, vol. 10(7), 1996, pp. 877–890. https://doi.org/10.1080/02693799608902114.
  • 21. Bhunia G.S., Dikhit M.R., Kesari S., Sahoo G.C., Das P.: Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology. Journal of Biomedical Research, vol. 25(6), 2011, pp. 373–384. https://doi.org/10.1016/S1674-8301(11)60050-X.
  • 22. Goodchild M.F.: Geographic Information Science and Systems for Environmental Management. Annual Review of Environment and Resources, vol. 28(1), 2003, pp. 493–519. https://doi.org/10.1146/annurev.energy.28.050302.105521.
  • 23. Mansourian S., Darbandi E.I., Mohassel M.H.R., Rastgoo M., Kanouni H.: Comparison of artificial neural networks and logistic regression as potential methods for predicting weed populations on dryland chickpea and winter wheat fields of Kurdistan province, Iran. Crop Protection, vol. 93, 2017, pp. 43–51. https://doi.org/10.1016/j.cropro.2016.11.015.
  • 24. Xiong Y., Zuo R., Carranza E.J.M.: Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, vol. 102, 2018, pp. 811–817. https://doi.org/10.1016/j.oregeorev.2018.10.006.
  • 25. Demertzis K., Iliadis L., Pimenidis E.: Large-Scale Geospatial Data Analysis: Geographic Object-Based Scene Classification in Remote Sensing Images by GIS and Deep Residual Learning. [in:] Iliadis L., Angelov P., Jayne C., Pimenidis E. (eds.), Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference: EANN 2020, Proceedings of the International Neural Networks Society, vol. 2, Springer, Cham 2020, pp 274–291. https://doi.org/10.1007/978-3-030-48791-1_21.
  • 26. Zhao J., Fan W., Zhai X.: Identification of land-use characteristics using bicycle sharing data: A deep learning approach. Journal of Transport Geography, vol. 82, 2020, 102562. https://doi.org/10.1016/j.jtrangeo.2019.102562.
  • 27. Wu A.N., Biljecki F.: Roofpedia: Automatic mapping of green and solar roofs for an open roofscape registry and evaluation of urban sustainability. Landscape and Urban Planning, vol. 214, 2021, 104167. https://doi.org/10.1016/j.landurbplan.2021.104167.
  • 28.Oyesiku O.O.: From Womb to Tomb. Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria 2002.
  • 29. Campbell A., Both A., Sun Q.C.: Detecting and mapping traffic signs from Google Street View images using deep learning and GIS. Computers, Environment and Urban Systems, vol. 77, 2019, 101350. https://doi.org/10.1016/j.compenvurbsys.2019.101350.
  • 30. Mubin N.A., Nadarajoo E., Shafri H.Z.M., Hamedianfar A.: Young and mature oil palm tree detection and counting using convolutional neural network deep learning method. International Journal of Remote Sensing, vol. 40(19), 2019, pp. 7500–7515. https://doi.org/10.1080/01431161.2019.1569282.
  • 31. Li W., He C., Fang J., Zheng J., Fu H., Yu L.: Semantic Segmentation-Based Building Footprint Extraction Using Very High-Resolution Satellite Images and Multi-Source GIS Data. Remote Sensing, vol. 11(4), 2019, 403. https://doi.org/10.3390/rs11040403.
  • 32. Kearney S.P., Coops N.C., Sethi S., Stenhouse G.B.: Maintaining accurate, current, rural road network data: An extraction and updating routine using RapidEye, participatory GIS and DL. International Journal of Applied Earth Observation and Geoinformation, vol. 87, 2020, 102031. https://doi.org/10.1016/j.jag.2019.102031.
  • 33. Servizi V., Petersen N.C., Pereira F.C., Nielsen O.A.: Stop detection for smartphone-based travel surveys using geo-spatial context and artificial neural networks. Transportation Research Part C: Emerging Technologies, vol. 121, 2020, 102834. https://doi.org/10.1016/j.trc.2020.102834.
  • 34. Malaainine M., Lechgar H., Rhinane H.: YOLOv2 Deep Learning Model and GIS Based Algorithms for Vehicle Tracking. Journal of Geographic Information System, vol. 13, 2021, pp. 395–409. https://doi.org/10.4236/jgis.2021.134022.
  • 35. Bi H., Shang W.-L., Chen Y., Wang K., Yu Q., Sui Y.: GIS aided sustainable urban road management with a unifying queueing and neural network model. Applied Energy, vol. 291, 2021, 116818. https://doi.org/10.1016/j.apenergy.2021.116818.
  • 36. Yang Y., Rosenbaum M.S.: Artificial neural networks linked to GIS. [in:] Nikravesh M., Aminzadeh F., Zadeh L.A. (eds.), Soft Computing and Intelligent Data Analysis in Oil Exploration, Developments in Petroleum Science, vol. 51, Elsevier, 2003, pp. 633–650. https://doi.org/10.1016/S0376-7361(03)80032-8.
  • 37. Dixon B.: Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology, vol. 309(1–4), 2005, pp. 17–38. https://doi.org/10.1016/j.jhydrol.2004.11.010.
  • 38. Almasri M.N., Kaluarachchi J.J.: Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling & Software, vol. 20(7), 2005, pp. 851–871. https://doi.org/10.1016/j.envsoft.2004.05.001.
  • 39. Rohmat F.I.W., Labadie J.W., Gates T.K.: Deep learning for compute-efficient modeling of BMP impacts on stream-aquifer exchange and water law compliance in an irrigated river basin. Environmental Modelling & Software, vol. 122, 2019, 104529. https://doi.org/10.1016/j.envsoft.2019.104529.
  • 40. Apaydin H., Sattari M.T.: Deep-learning GIS hybrid approach in precipitation modeling based on spatio-temporal variables in the coastal zone of Turkey. Climate Research, vol. 81, 2020, pp. 149–165. https://doi.org/10.3354/cr01612.
  • 41. Patault E., Landemaine V., Ledun J., Soulignac A., Fournier M., Ouvry J.-F., Cerdan O., Laignel B.: Integrating DL to GIS Modelling: An Efficient Approach to Predict Sediment Discharge at Karstic Springs under Different Land-Use Scenarios. EGU General Assembly, 2020. https://doi.org/10.5194/egusphereegu2020-467.
  • 42. Lei X., Chen W., Panahi M., Falah F., Rahmati O., Uuemaa E., Kalantari Z., Ferreira C., Rezaie F., Tiefenbacher J., Lee S., Bian H.: Urban flood modeling using deep-learning approaches in Seoul, South Korea. Journal of Hydrology, vol. 601, 2021, 126684. https://doi.org/10.1016/j.jhydrol.2021.126684.
  • 43. Stassopoulou A., Petrou M., Kittler J.: Bayesian and neural networks for geographic information processing. Pattern Recognition Letters, vol. 17(13), 1996, pp. 1325–1330. https://doi.org/10.1016/S0167-8655(96)00089-X.
  • 44. Choi J., Oh H.-J., Lee H.-J., Lee S.: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, vol. 124, 2012, pp. 12–23. https://doi.org/10.1016/j.enggeo.2011.09.011.
  • 45. Hamdi Z., Brandmeier M., Straub Ch., Straub D., Berk M.: Coupling DL and GIS for forest damage assessment based on high-resolution remote sensing data. Geophysical Research Abstracts, vol. 21, 2019, p1–1.
  • 46. Bui D.T., Hoang N.-D., Martínez-Álvarez F., Ngo P.-T.T., Hoa P.V., Pham T.D., Samui P., Costache R.: A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of the Total Environment, vol. 701, 2020, 134413. https://doi.org/10.1016/j.scitotenv.2019.134413.
  • 47. Radke D., Hessler A., Ellsworth D.: FireCast: leveraging DL to predict wildfire spread. [in:] Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), International Joint Conferences on Artificial Intelligence, 2019, pp. 4575–4581. https://doi.org/10.24963/ijcai.2019/636.
  • 48. Nhu V.-H., Hoang N.-D., Nguyen H., Ngo P.T.T., Bui T.T., Hoa P.V., Samui P., Bui D.T.: Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. CATENA, vol. 188, 2020, 104458. https://doi.org/10.1016/j.catena.2020.104458.
  • 49. Wu Z., Zhou Y., Wang H., Jiang Z.: Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Science of the Total Environment, vol. 716, (2020), 137077. https://doi.org/10.1016/j.scitotenv.2020.137077.
  • 50. Bragagnolo L., da Silva R.V., Grzybowski J.M.V.: Landslide susceptibility mapping with r.landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks. Environmental Modelling & Software, vol. 123, 2020, 104565. https://doi.org/10.1016/j.envsoft.2019.104565.
  • 51. Ma J., Cheng J.C.P.: Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology. Applied Energy, vol. 183, 2016, pp. 182–192. https://doi.org/10.1016/j.apenergy.2016.08.079.
  • 52. Re Cecconi F., Moretti N., Tagliabue L.C.: Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings. Renewable and Sustainable Energy Reviews, vol. 110, 2019, pp. 266–277. https://doi.org/10.1016/j.rser.2019.04.073.
  • 53. Kucklick J.-P., Müller J., Beverungen D., Mueller O.: Quantifying the impact of location data for real estate appraisal – a GIS-based deep learning approach. ECIS 2021 Research-in-Progress Papers, no. 23, 2021. https://aisel.aisnet.org/ecis2021_rip/23.
  • 54. Zhang Y., Li S., Dong R., Deng H., Fu X., Wang Ch., Yu T., Jia T., Zhao J.: Quantifying physical and psychological perceptions of urban scenes using deep learning. Land Use Policy, vol. 111, 2021, 105762. https://doi.org/10.1016/j.landusepol.2021.105762.
  • 55. Pepe M., Costantino D., Alfio V.S., Vozza G., Cartellino E.: A Novel Method Based on DL, GIS and Geomatics Software for Building a 3D City Model from VHR Satellite Stereo Imagery. ISPRS International Journal of Geo-Information, vol. 10(10), 2021, 697. https://doi.org/10.3390/ijgi10100697.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e7606e3-9d5e-4ec2-a42f-484ed12678b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.