PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hydrodynamic Equilibrium for Sediment Transport and Bed Response to Wave Motion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order “upwind” numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness zm.
Czasopismo
Rocznik
Strony
486--513
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • University of Technology, Department of Geotechnics, Koszalin, Poland
  • University of Warmia and Mazury, Department of Mechanics and Civil Engineering Constructions, Olsztyn, Poland
autor
  • Polish Academy of Sciences, Institute of Hydroengineering, Gdańsk, Poland
Bibliografia
  • [1] Balouin, Y., H. Howa, R. Pedreros, and D. Michel (2005), Longshore sediment movements from tracers and models, Praia de Faro, South Portugal, J. Coast. Res. 21, 1, 146-156, DOI: 10.2112/01066.1.
  • [2] Bialik, R.J. (2013), Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement, J. Hydrol. Hydromech. 61, 3, 202-207, DOI: 10.2478/johh-2013-0026.
  • [3] Bialik, R.J., and W. Czernuszenko (2013), On the numerical analysis of bed-load transport of saltating grains, Int. J. Sediment Res. 28, 3, 413-420, DOI:10.1016/S1001-6279(13)60051-7.
  • [4] Bialik, R.J., V.I. Nikora, and P.M. Rowiński (2012), 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow, Acta Geophys. 60, 6, 1639-1660, DOI: 10.2478/s11600-012-0003-2.
  • [5] Callaghan, D.P., F. Saint-Cast, P. Nielsen, and T.E. Baldock (2006), Numerical solutions of the sediment conservation law; a review and improved formulation for coastal morphological modelling, Coast. Eng. 53, 7, 557-571, DOI:10.1016/j.coastaleng.2006.03.001.
  • [6] Cayocca, F. (2001), Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France, Coast. Eng. 42, 2, 115-142, DOI: 10.1016/s0378-3839(00)00053-3.
  • [7] Chiang, Y.-Ch., and S.-S. Hsiao (2011), Coastal morphological modeling. In: A.J. Manning (ed.), Sediment Transport in Aquatic Environments, InTech, Shanghai, 203-230, DOI: 10.5772/22076.
  • [8] Chiang, Y.-Ch., S.-S. Hsiao, and M.-C. Lin (2010), Numerical solutions of coastal morphodynamic evolution for complex topography, J. Marine Sci. Tech. 18, 3, 333-344.
  • [9] Einstein, H.A. (1950), The Bed-load Function for Sediment Transportation in Open Channel Flows, Technical Bulletin, No. 1026, United States Department of Agriculture, Washington D.C., 71 pp.
  • [10] Johnson, H.K., and J.A. Zyserman (2002), Controlling spatial oscillations in bed level update schemes, Coast. Eng. 46, 2, 109-126, DOI: 10.1016/s0378-3839(02)00054-6.
  • [11] Kaczmarek, L.M. (1999), Moveable Sea Bed Boundary Layer and Mechanics of Sediment Transport, IBW PAN, Gdańsk.
  • [12] Kaczmarek, L.M., J. Biegowski, and R. Ostrowski (2004), Modelling cross-shore intensive sand transport and changes of bed grain size distribution versus field data, Coast. Eng. 51, 5-6, 501-529, DOI: 10.1016/j.coastaleng.2004.05.007.
  • [13] Kaczmarek, L.M., Sz. Sawczyński, and J. Biegowski (2011), Bathymetry changes and sand sorting during silting up of the channels: Part 1 – Conservation of sediment mass, Tech. Sci. 14, 1, 153-170.
  • [14] Kuroiwa, M., J.W. Kamphuis, T. Kuchiishi, and Y. Matsubara (2004), A 3D morphodynamic model with shoreline change based on quasi-3D nearshore current model. In: Proc. 2nd Int. Conf. “Asian and Pacific Coasts 2003”, 29 February – 4 March 2004, Makuhari, Japan.
  • [15] Long, W., J.T. Kirby, and Z. Shao (2008), A numerical scheme for morphological bed level calculations, Coast. Eng. 55, 2, 167-180, DOI: 10.1016/j.coastaleng.2007.09.009.
  • [16] Moreno, P.A., and F.A. Bombardelli (2012), 3D numerical simulation of particleparticle collisions in saltation mode near stream beds, Acta Geophys. 60, 6, 1661-1688, DOI:10.2478/s11600-012-0077-x.
  • [17] Plumb, R.A. (1979), Eddy fluxes of conserved quantities by small-amplitude waves, J. Atmos. Sci. 36, 9, 1699-1704, DOI: 10.1175/1520-0469(1979)036<1699:EFOCQB>2.0.CO;2.
  • [18] Pruszak, Z., R. Wierzchnicki, A. Owczarczyk, and R.B. Zeidler (1996), Nearbed sediment concentration from tracer studies, Coast. Eng. Proc. 25, 3901-3912, DOI: 10.9753/icce.v25.25p.
  • [19] Sawczyński, Sz. (2012), Bathymetry changes and sediment sorting within coastal structures: a case of the silting-up of navigation channels, Ph.D. Thesis, University of Technology, Koszalin, Poland (in Polish).
  • [20] Sawczyński, Sz., L.M. Kaczmarek, and J. Biegowski (2011), Bathymetry changes and sand sorting during silting up of the channels: Part 2 – Modelling versus laboratory data, Tech. Sci. 14, 2, 171-192.
  • [21] Struiksma, N., K.W. Olesen, C. Flokstra, and H.J. de Vriend (1985), Bed deformation in curved alluvial channels, J. Hydraul. Res. 23, 1, 57-79, DOI:10.1080/00221688509499377.
  • [22] Szymkiewicz, R. (1999), Similarity of kinematic and diffusive waves: a comment on accuracy criteria for linearised diffusion wave flood routing: By K. Bajracharya and D.A. Barry [Journal of Hydrology, vol. 195 (1997),200-217], J. Hydrol. 216, 3-4, 248-251, DOI:10.1016/s0022-1694(98)00276-5.
  • [23] van Rijn, L.C. (1984), Sediment transport, part I: Bed load transport, J. Hydraul. Eng. 110, 10, 1431-1456, DOI: 10.1061/(ASCE)0733-9429(1984)110:10(1431).
  • [24] van Rijn, L.C., R.L. Soulsby, P. Hoekstra, and A.G. Davies (eds.), (2005), SANDPIT, Sand Transport and Morphology of Offshore Mining Pits, Aqua Publications, The Netherlands.
  • [25] Walstra, D.J.R., T. Chesher, A.G. Davies, J. Ribberink, P. Sergent, P. Silva, G. Vittori, R. Walther, and L.C. van Rijn (2005), Intercomparison of the state of the morphological models. In: L.C. van Rijn, R.L. Soulsby, P. Hoekstra, and A.G. Davies (eds.), SANDPIT, Sand Transport and Morphology of Offshore Mining Pits, Aqua Publications, The Netherlands, AY1–AY23.
  • [26] Watanabe, A. (1988), Modeling of sediment and beach evolution. In: K. Horikawa (ed.), Nearshore Dynamics and Coastal Processes, University of Tokyo Press, Tokyo, 292-302.
  • [27] Wiberg, P.L., and J.D. Smith (1985), A theoretical model for saltating grains in water, J. Geophys. Res. 90, C4, 7341-7354, DOI: 10.1029/JC090iC04p07341.
  • [28] Yalin, M.S., and A.M.F. da Silva (2001), Fluvial Processes, IAHR Monograph, International Association for Hydraulic Research, Delft.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e73ffd3-e7ec-4c4b-a01e-f1737b8e0190
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.