PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of climate parameters on long-term variations of the distribution of phytoplankton biomass and nutrient concentration in the Baltic Sea simulated by a 3D model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We used a 3-D coupled seaice ecological model of the Baltic Sea to investigate the influence of long-term trends in average temperature, wind speed and solar irradiance on nutrients concentration and distribution of phytoplankton. We tested the sensitivity of the model to changes of the main physical parameters such as temperature, wind speed, solar and thermal radiation performing several numerical experiments with different configurations. Discussion about the relevance of the results for the expected future climate change is provided. The calculations were done for whole Baltic Sea for the period from 2004 to 2048. The results of the numerical simulations for the different areas of Baltic Sea (nine stations: Gulf of Gdańsk, Gdańsk Deep, Gotland Deep, Bornholm Deep, Gulf of Finland, Gulf of Riga, Gulf of Bothnian, Bothnian Sea, Danish Straits) were presented. The simulations results show significant changes in phytoplankton biomass and nutrient concentration distributions, which took place in the regions where a significant increase in currents (to 100 cm s-1) was found. The results of the numerical simulations for five years (2000–2004) are consistent with in situ observations for temperature and phytoplankton (Dzierzbicka-Glowacka et al. 2011b).
Rocznik
Strony
651--666
Opis fizyczny
Bibliogr. 58 poz., il.
Twórcy
  • Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81–712 Sopot, Poland
autor
  • Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81–712 Sopot, Poland
autor
  • Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81–712 Sopot, Poland
autor
  • Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81–712 Sopot, Poland
autor
  • Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81–712 Sopot, Poland
Bibliografia
  • 1. Andersson H.C. 2002 – Influence of longterm regional and large-scale atmospheric circulation on the Baltic Sea level – Tellus, 54: 76–88.
  • 2. Bärring L., von Storch H. 2004 – Scandinavian storminess since about 1800 Geophys. Res. Lett. 31: L20202, doi: 10.1029/2004GL020441.
  • 3. Behrenfeld M.J. 2010 – Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms – Ecology, 91: 977–989.
  • 4. Cattiaux J., Vautard R ., Cassou C., Yiou P., Masson-Delmotte V., Codron F. 2010 – Winter 2010 in Europe: A cold extreme in a warming climate – Geophys. Res. Lett. 37: L20704, doi:10.1029/2010GL044613.
  • 5. Ciszewski P. 1983 – Estimation of zooplankton biomass and production in the Southern Baltic Pol. Ecol. Stud. 9: 387–396.
  • 6. Dzierzbicka-Głowacka L. 1996 – Mathematical modelling of the chlorophyll-a concentration in a stratified medium – Oceanologia, 38: 153–193.
  • 7. Dzierzbicka-Głowacka L. 2005 – Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model – Oceanologia, 47: 591–619.
  • 8. Dzierzbicka-Głowacka L. 2006 – Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 2. Numerical simulations – Oceanologia, 48: 41–71.
  • 9. Dzierzbicka-Głowacka L., Bielecka L., Mudrak S. 2006 – Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations – Biogeosciences, 3: 635–650.
  • 10. Dzierzbicka-Głowacka L., Kulinski K., Maciejewska A., Jakacki J., Pempkowiak J. 2010a – Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data – Oceanologia, 52: 621–648.
  • 11. Dzierzbicka-Głowacka L., Ż mijewska I. M., Mudrak S., Jakacki J., Lemieszek A. 2010b – Population modelling of Acartia spp. in a water column ecosystem model for the South-Estern Baltic Sea – Biogeosciences, 7: 2247–2259.
  • 12. Dzierzbicka-Głowacka L., Kulinski K., Maciejewska A., Jakacki J., Pempkowiak J. 2011a – Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature – Oceanologia, 53: 971–992
  • 13. Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A. 2011b – Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea – Oceanologia, 53: 449–470.
  • 14. Ennet P., Kinnuen K., Tamsalu R. 1989 Ecosystem model FINEST – Valgus, Tallinn, 89 pp.
  • 15. Fennel W. 1995 – A model of the yearly cycle of nutrients and plankton in the Baltic Sea – J. Mar. Syst. 6: 313–329.
  • 16. Fennel W., Neumann T. 1996 – The mesoscale variability of nutrients and plankton as seen in a coupled model – Ger. J. Hydrogr. 48: 49–71.
  • 17. Fennel W., Neumann T. 1999 – A coupled physical-chemical-biological model for the western Baltic (In: Computerized modeling of sedimentary systems, Eds: J. Harff, W. Lemke, K. Stattegger), 1st ed. – Springer-Verlag, Berlin, pp. 169–182.
  • 18. Fennel W., Neumann T. 2004 – Introduction to the Modelling of marine Ecosystems – Elsevier Sciences B.V., Elsevier Oceanography Series 72, Amsterdam, 297 pp.
  • 19. Fonselius S.H. 1969 – Hydrography of the Baltic Deep Basins III – Fish. Board of Sweden, Ser. Hydrogr. 23: l –97.
  • 20. Francis J.A., Chan W., Leathers D.J., Miller J.R., Veron D.E. 2010 – Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent – Geophys. Res. Lett. 36: L07503, doi:10.1029/2009GL037274.
  • 21. Graneli E., Wallstrom K., L arsson U., Graneli W., Elmgren R. 1990 – Nutrient Limitation of Primary Production in the Baltic Sea Area – Ambio, 19: 142–151.
  • 22. Haapala J., Meier H.E.M., Rinne J. 2001 Numerical investigations of future ice conditions in the Baltic Sea – Ambio, 30: 237–244.
  • 23. HELCOM 2005 – Nutrient Pollution to the Baltic Sea in 2000 – Baltic Sea Environmental Proceedings 100.
  • 24. HELCOM 2006 – Development of tools for assessment of eutrophication in the Baltic Sea – Baltic Sea Environmental Proceedings 104.
  • 25. Hordoir R, Meier H.E.M. 2011 – Effect of climate change on the thermal stratification of the Baltic sea: a sensitivity experiment – Clim. Dyn., DOI:10.1007/s00382-011-1036-y.
  • 26. Hurrell J.W. 1995 – Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation – Science, 269: 676–679.
  • 27. IPCC, Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller) – Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
  • 28. Jansson B. 1972 – Ecosystem, approach to the Baltic problem – Ecol. Res. Com. 16: l– 82.
  • 29. Mańkowski W. 1978 – Baltic zooplankton and its productivity. Productivity of Baltic sea ecosystem – Ossolineum, Wrocław-Warszawa-Kraków-Gdańsk, pp. 113–134.
  • 30. Marmefelt E., Hakansson B. 2000 – Development of an Ecological Model System for the Kattegat and the Southern Baltic – SMHI Reports Oceanography No. 29: 78 pp.
  • 31. Meier H.E.M. 2002a – Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part l: Model experiments and results for temperature and salinity – Clim. Dyn. 19: 237–253.
  • 32. Meier H.E.M. 2002b – Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 2: Results for sea ice – Clim. Dyn. 19: 255–266.
  • 33. Miller R.L., Schmidt G.A., Shindell D.T. 2006 – Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models – J. Geophys. Res. 111, D18101, doi:10.1029/2005JD006323.
  • 34. Mudrak S. 2004 – Short- and long-term variability of zooplankton in coastal Baltic water using the Gulf of Gdańsk as an example – Ph.D. thesis, Gdańsk University, Gdynia, 323 pp.
  • 35. Omstedt A., Axell L. 2003 – Modelling the variations of salinity and temperature in the large Gulfs of the Baltic Sea – Cont. Shelf Res. 23: 265–294.
  • 36. Omstedt A., Gustafsson E.K., Wesslander K. 2009 – Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water – Cont. Shelf Res. 29: 870–885.
  • 37. Omstedt A., Pettersen C., Rodhe J., Winsor P. 2004 – Baltic Sea climate: 200 yr of data on air temperature, sea level variations, ice cover, and atmospheric circulation – Clim. Res. 25: 205–216.
  • 38. Overland J.E., Wang M. 2010 – Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice – Tellus, 62: 1–9.
  • 39. Philipona R., B ehrens K., Ruckstuhl C. 2009 – How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980 – Geophys. Res. Lett. 36, L02806, doi:10.1029/2008GL036350.
  • 40. Renk H. 1989 – Description of seasonal changes of hydrobiological parameters in the gulf of Gdańsk using a trigonometric polynomial – Oceanologia 27: 79–92.
  • 41. Rozwadowska A., Jsemer H.–J. 1998 – Solar vadiation fluxes at the Surface of the Balthic Proper. Part 1: Mean annual cycle and in foundering factors – Oceanologia 40: 307–330.
  • 42. Różyński G. 2010 – Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland: its drivers and impacts – Ocean Engineering, 37: 186–199.
  • 43. Savchuk O.P. 2002 – Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model – J. Mar. Syst. 32: 253–280.
  • 44. Savchuk O.P. 2005 – Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991-1999 – J. Mar. Syst. 56: 1–15.
  • 45. Savchuk O., Kolodochka A., Gutsabbath E. 1988 – Simulation of the matter cycle in the Baltic Sea ecosystem – Proc. 16th Conf. Baltic Oceanogr, Kiel, Germany, pp. 921–931.
  • 46. Savchuk O.P., Wulff F. 2009 – Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea – Hydrobiologia, 629: 209–224.
  • 47. Shaffer G. 1987 – Redfield rations, primary production and organic carbon burial in the Baltic Sea – Deep Sea Res. 34: 769–784.
  • 48. Snoeijs P. M. 1990 – Effects of temperature on spring bloom dynamics of epilithic diatom communities in the Gulf of Bothnia – J. Veg. Sci. 1: 599–608.
  • 49. Stigebrandt A., Gustafsson B.G. 2003 Response of Baltic Sea to climate change-theory and observations – J. Sea Res. 49: 243–256.
  • 50. Stigebrandt A., Wulff F. 1987 – A model for the dynamics of nutrients and oxygen in the Baltic Proper – J. Mar. Res. 45: 729– 759.
  • 51. Svansson A. 1996 – A diffusion model for the primary production of phytoplankton – DeepSea Res. II, 43: 37–46.
  • 52. Tamsalu R. 1998 – Coupled 3D hydrodynamic and ecosystem mode FinEstMeri – Rep. Ser. Finnish Inst. Mar. Res., Helsinki, 35: 1–156.
  • 53. Tamsalu R., Ennet P. 1995 – Ecosystem modelling in the Gulf of Finland. II. The aquatic ecosystem Model FINEST – Estuar. Coast. Shelf Sci. 41: 429–458.
  • 54. Vinogradow M.E, Shushkina E.A. 1987 – Functioning of plankton communities in the euphotic zone of the ocean – Nauka, Moskwa, pp. 83–91 (in Russian).
  • 55. Voipio A. 1981 – The Baltic Sea – Elsevier Scientific Publishing Company, Amsterdam, 123–143.
  • 56. Wasmund N., Nausch G., Matthaus W. 1998 – Phytoplankton spring blooms in the southern Baltic Sea-spatio-temporal development and long-term trends – J. Plankton Res. 20: 1099–1117.
  • 57. Witek Z. 1995 – Biological production and its utilization within a marine ecosystem in the western Gdańsk basin – Sea Fisheries Institute, Gdynia, Poland, 145pp.
  • 58. Yin J.H. 2005 – A consistent poleward shift of the storm tracks in simulations of 21st century climate – Geophys. Res. Lett. 32, L18701, doi:10.1029/2005GL023684.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e71059a-100a-4ebb-b06a-5eeb5785afbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.