Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the concept of diagnosing the technical condition of mechanical devices. The test is based on a non-invasive vibration analysis technique combined with the use of artificial intelligence method. The object of the research is an electric motor for which vibrations were recorded by a vibration sensor based on four 3-axis digital accelerometers and MPU-6050 gyroscopes. The effectiveness of classification methods using the two-class and one-class classification was compared. It has been shown that the use of an incomplete pattern of the vibration model and a single-class classifier allows for effective detection of anomalies in the operation of an induction motor. Satisfactory classification efficiency was achieved, despite the limitation of the teaching set only to the information obtained during the correct operation of the device. The described method is universal and can be used to diagnose the technical condition of many different types of technical devices.
Czasopismo
Rocznik
Tom
Strony
art. no. 2022316
Opis fizyczny
Bibliogr. 11 poz., il. kolor., rys., wykr.
Twórcy
autor
- Uniwersytet Rzeszowski, Al Rejtana 16c, 35-959 Rzeszów
autor
- Uniwersytet Rzeszowski, Al Rejtana 16c, 35-959 Rzeszów
autor
- Uniwersytet Rzeszowski, Al Rejtana 16c, 35-959 Rzeszów
Bibliografia
- 1. R.B. Randall; Vibration-based condition monitoring: industrial, automotive and aerospace applications; John Wiley & Sons 2021. DOI:10.1002/9780470977668
- 2. W. Fan, P. Qiao; Vibration-based damage identification methods: A review and comparative study. Struct Health Monit 2011, 10(1), 83-111.
- 3. Ke Feng, J.C. Ji, Qing Ni, M. Beer; A review of vibration-based gear wear monitoring and prediction techniques; Mechanical Systems and Signal Processing, 2023, 182, 109605. DOI:10.1016/j.ymssp.2022.109605.
- 4. R. B. Randall, J. Antoni; Rolling element bearing diagnostics a tutorial; Mechanical systems and signal processing 2011, 25(2), 485-520.
- 5. Y.-F. Li, M. Zuo, K. Feng, Y.-J. Chen; Detection of bearing faults using a novel adaptive morphological update lifting wavelet; Chinese Journal of, Mechanical Engineering 2017, 30, 1305-1313.
- 6. D. Gil, M. Grochowina, L. Leniowska; Detecting of the rolling bearing state based on acoustic signal and K-NN classifier; IEEE SPA 2019 - Signal Processing, Algorithms, Architectures, Arrangements and Applications, Conference Proceedings, Poznań, 2019, 246-249.
- 7. V.J. Suryawanshi, A.C Pawar, S.P. Palekar, K.A. Rade; Defect detection of composite honeycomb structure by vibration analysis technique, Materials Today: Proceedings 2020, 27, 2731-2735.
- 8. X.Chiementin, B.Kilundu, J.P.Dron, P.Dehombreux, K.Debray; Effect of cascade methods on vibration defects detection, Journal of Vibration and Control 2011, 17, 567-577.
- 9. A.K.Yadav, H,Malik, S.S.Chandel; Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models; Renewable and Sustainable Energy Reviews 2014, 31, 509-519.
- 10. G.Meena, R.R.Choudhary; A review paper on IDS classification using KDD 99 and NSL KDD dataset in WEKA; International Conference on Computer, Communications and Electronics (Comptelix) 2017, 553-558.
- 11. U. Dackermann, W.A. Smith, R.B. Randall; Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks; Structural Health Monitoring 2014, 13(4), 430-444. DOI:10.1177/1475921714542890
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e6f4a4f-7285-4279-aadc-0d0e61d55806