Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Archivum Combustionis

Tytuł artykułu

Ozone impact on NO emission in natural gas combustion: a numerical and experimental study

Autorzy Wilk, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The effects of ozone additions to natural gas/air mixtures on emissions of NO were studied. The investigations were realized in laboratory equipment composed of an ozone generator, and a combustion chamber with a modified Mecker burner and gas composition, and flow rate and temperature measurement system. Comparisons were made between combustion with and without ozone additions. The tests were performed on 1.25 to 9.83 mg O3/dm3 (O3+N2) additions at 390 W thermal power and an excess air ratio of 0.8 to 1.4. The investigations demanded the use of synthetic air. Numerical studies of the combustion process using CHEMKIN II package were also performed. Within the experimental work a slight increase of NO concentrations with ozone concentration in air were confirmed. The numerical results are in qualitative and quantitative agreement with the experiments.
Słowa kluczowe
EN ozone   combustion   NOx formation   modelling   heat transfer   temperature correction  
Wydawca Komitet Termodynamiki i Spalania PAN
Czasopismo Archivum Combustionis
Rocznik 2016
Tom Vol. 36 nr 1
Strony 1--12
Opis fizyczny Bibliogr. 47 poz., rys., tab.
autor Wilk, M.
  • AGH University of Science & Technology Faculty of Metals Engineering and Industrial Computer Science Al. Mickiewicza 30, 30-059 Kraków, Poland, tel.: +48 12 617-31-98; fax: +48 12 617 26 12,
[1] Wilk RK, Low-emission combustion. WPŚl: Gliwice, Poland; 2002.
[2] Tomita E, Kawahara N, Piao Z, Fujita S, Hamamoto Y. Hydrogen combustion and exhaust emissions ignited with diesel oil in a dual fuel engine. SAE Technical Paper 2001-01-3503.
[3] Menezes EW, Silva R, Cataluńa R, Ortega RJC. Effect of ethers and ether/ethanol additives on the physicochemical properties of diesel fuel and on engine tests. Fuel 2006;85:815–22.
[4] Yanfeng G, Shenghua L, Hejun G, Tiegang H, Longbao Z. A new diesel oxygenate additive and its effects on engine combustion and emissions. Appl Therm Eng 2007;27:202–207.
[5] Bari S, Mohammad Esmaeil M. Effect of H2/O2 addition in increasing the thermal efficiency of a diesel engine. Fuel 2010;89;378–383.
[6] Morsy MH. Ignition control of methane fueled homogeneous charge compression ignition engines using additives. Fuel 2007;86:533–540.
[7] Seo A, Amano T. Study on the removal of unburned hydrocarbon by ozone. En Env Tech Lab. Tokyo-Gas. Annual Technical Report Digest 9; 1999, Japan.
[8] Rotzoll G. Mass spectroscopic investigation of the i-C4H10-O2-O3 reaction and implications for the reaction mechanism. Combust Flame 1987;69:229-233.
[9] Caprio V, Insola A, Lignola PG. Ozone activated low temperature combustion of propane in CSTR. Combust Sci Tech 1984;35:215-224.
[10] Golovitchev VI, Chomiak J. Evaluation of ignition improvers for methane autoignition. Proc of the 16-th Intern Colloquium on the Dynamics of Explosions and Reactive Systems. Krakow, Poland; 1997, p. 565-568.
[11] Ozonek J. Ozone synthesis laboratory. WUPL, Lublin; 1993
[12] Lukhovitskii BI, Starik AM, Titova NS. On the initiation of combustion of O2–O3 mixtures in the course of laser-induced asymmetrical ozone vibrations. Kinet Catal 2004;45:6:847-853.
[13] Rotzoll G. Mass spectrometric investigation and computer modelling of the CH4-O2-O3 reaction from 480 to 830 K. J Phys Chem 1986;90:677-683.
[14] Tacibana T, Hirata K, Nishida H, Osada H. Effect of ozone on combustion in compression ignition engines. Combust Flame 1991:85:515-519.
[15] Nasser SH, Morris S, James S. A novel fuel efficient and emission abatement technique for internal combustion engines. SAE Paper 982561; 1998.
[16] Nomaguchi T, Koda S. Spark ignition of methane and methanol in ozonized air. Twenty Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh PA; 1988, p. 1677-1682.
[17] Nishida H, Tachibana T. Homogeneous charge compression ignition of natural gas/air mixture with ozone addition. J Propul Power 2006;22:151-7.
[18] Yagyu Y, Hayashi N, Kawasaki H, Ohshima T, Suda Y, Baba S. Fundamental studies on effect of ozone injection to the internal-combustion engine - FTIR spectrum of hydrocarbon compound reformulated by ozone. J Phys Conf Ser 2008;100:060215.
[19] Foucher F, Higelin P, Mounaim-Rousselle C, Dagaut P. Influence of ozone on the combustion of n-heptane in a HCCI engine. P Combust Inst 2013;34:3005–3012.
[20] Wilk M, Investigations on ozone effects on gas combustion. PhD thesis, AGH University of Science and Technology, Krakow, Poland; 2006.
[21] Wilk M. Wpływ ozonu na temperaturę procesu spalania gazu ziemnego. Archiwum Spalania 2009:9:3/4:151160.
[22] Wilk M, Magdziarz A. Ozone effects on the emissions of pollutants coming from natural gas combustion. PJoES 2010:19:6:1331–1336.
[23] Thermocouple – Chapter 1: Specifications (IEC 584-1:1995). CENELEC, EN 60584-1:1995E.
[24] Szlęk A. Mathematical modeling of chemical kinetics of combustion gases. WPŚl: Gliwice, Poland; 2004.
[28] Atkinson R, Baulch DL, Cox RA, Hampson Jr. RF, Kerr JA, Rossi MJ, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI. J Phys Ref Data 1997;26:6.
[29] Baulch DL, Drysdale D. Evaluated kinetics data for high temperature reaction. Butterworths, Londyn, U.K.; 1976.
[30] Heimerl JM, Coffee TP. The detailed modeling of premixed, laminar steady flames. I. Ozon.Combust Flame 1980;39:301-315.
[31] Puri I. The removal of NO by low-temperature O3 oxidation. Combust Flame 1995;102:512-518.
[32] Simonalis R, Heicklen J. Reaction of CH3, CH3O and CH3O2 radicals with O3. J Phy Chem. 1975;79:4:298302.
[33] Toby S, Toby F. Kinetics and chemiluminescence in reaction of methane with heated ozone. J Phys Chem 1989;93:2453-2456.
[34] Warnatz J. Calculation of the structure of laminar flat falmes I: Flame velocity of freely propagating ozone decomposition flames. Ber. Bunsenges. J Phys Chem 1978;82:193-200.
[35] Kaskane WE. The dependence of flame temperature on mass burning velocity. Proc Combust Inst 1957;6;1:134-143.
[36] Petela R, Wilk K, Strzeszewski R. Gospodarka Paliwami i Energią 1975;2:5-8.
[37] Petela R. Paliwa i ich Spalanie. Część trzecia Płomień,. Skrypty Uczelniane. Gliwice 1982, p.66-68.
[38] Pitts W, Braun E,Peacock RD, Mitler HE, Johnsson E, Reneke PA, Blevins LG. Temperature Uncertainties for bare-bead and aspirated thermocouple measurements in fire environments. Thermal Measurements : The foundation of fire standards, ASTM STP 1427, L.A. Gritzo and N. J. Alvares, Eds, ASTM International, West Conshohocken, PA, 2002.
[39] Martins CA, Pimenta AP, Carvalho Jr JA, Ferreira MA, Caldeira-Pires AA. CH and C2 radicals characterization in natural gas turbulent diffusion flames. J Braz Soc Mech Sci Eng 2005;27:2:111-118.
[40] Cengel YA, Heat Transfer. A practical approach, McGraw-Hill; 2006, p. 386.
[41] Bagajewicz M.J., Chmielewski D.J., Tanth D.N. Smart Process Plants: Software and Hardware Solutions for Accurate Data and Profitable Operations. McGraw-Hill Company Inc, 2010.
[42] Szargut J. Data Reconciliation Calculus in Thermal Engineering (in Polish). Polish Academy of Sciences, Ossolineum Publisher, Wrocław 1984.
[43] Szega M. Advantages of an application of the generalized method of data reconciliation in thermal technology. Archives of Thermodynamics 2009;30;4:219-232.
[44] Szega M.: Application of Data Reconciliation Method for Increase of Measurements Reliability in the Power Unit System of a Steam Power Plant. Monograph No. 193. Silesian University of Technology Publisher, Gliwice 2009, (in Polish).
[45] Szega M.: Reconciliation of chemical elements balances in the process of nitric acid production by using a data validation and reconciliation algorithm (in Polish). Przem Chem 2008;87;6:696-701.
[46] Guide to the expression of uncertainty in measurement. International Organization for Standardization; 1993,
[47] IMSL Fortran 90 MP Library version 4.01 for Microsoft Windows NT(R) and Microsoft Windows95(R).
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-0e6b2ea6-2485-4e8b-a57f-bd22371d779a