PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Molding Sand Technology Between Alphaset (APNB) and Furan (FNB)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on investigation of properties of two most widely used self-set sand binder systems APNB and FNB across the Globe, for making molds and cores in foundries to produce castings of different sizes involving wide range of metals and alloys, ferrous and nonferrous. This includes study of compression strength values of samples made out of molding sand at different binder addition level using new, mechanically reclaimed (MR) and thermally reclaimed (TR) sand. Strength values studied include dry strength (at room temperature) at specified intervals simulating different stages of mold handling, namely stripping and pre heating, followed by degraded strength after application of thinner based zircon wash by brush, subsequent lighting of, then checking strength both in warm (degraded strength) & cold (recovered strength) conditions. Throughout the cycle of mold movement from stripping to knock out, strength requirements can be divided into two broad classifications, one from stripping to closing (dry strength) and another from pouring to knock out (hot & retained strength). Although the process for checking of dry strength are well documented, no method using simple equipments for checking hot & retained strength are documented in literature. Attempts have been made in this paper to use some simple methods to standardize process for checking high strength properties using ordinary laboratory equipments. Temperature of 450°C has been chosen by trial & error method to study high temperature properties to get consistent & amplified values. Volume of gases generated for both binders in laboratory at 850°C have also been measured. Nature of gases including harmful BTEX and PAH generated on pyrolysis of FNB and APNB bonded sands are already documented in a publication [1]. This exercise has once again been repeated in same laboratory, AGH University, Poland with latest binder formulations in use in two foundries in India.
Rocznik
Tom
Strony
11--20
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Forace Polymers (P) Ltd., India
Bibliografia
  • [1] Kmita, A., Roczniak, A. & Holtzer, M. (2017). Identification of Pyrolysis products of the Alphaset Binder with Gas Chromatography/Mass Spectrometry. Metalurgija. 56(1-2), 21-24.
  • [2] 50th Census of World casting production, Modern casting. (2016, Dec). Retrieved March 06, 2019, from http://www.foundryinfo-india.org/statistics/Census-2016-Modern-Casting.pdf.
  • [3] IIF Bulletin. Retrieved March 06, 2019, from http://foundryinfo-india.org/profile_of_indian.aspx.
  • [4] Carlo Cozzi. (2011, Feb). Ester cured Sodium Silicate a valid process for sand reclamation, 59th IFC Chandigarh. Retrieved March 06, 2019 from http://foundryinfo-india.org/images /pdf/TS-2A-II.pdf.
  • [5] Holtzer, M. (2015). Influence of Reclaim addition to the molding sand matrix obtained in the Alphaset technology on the emission of gases - Comparison with molding sand with Furfuryl Resin. Archives of foundry Engineering. 15(1), 121-125.
  • [6] Kmita, A., Roczniak, A. & Holtzer M. (2017). Identification of Pyrolysis products of the Alphaset Binder with Gas Chromatography/Mass Spectrometry. Metalurgija. 56(1-2), 21-24.
  • [7] Lucarz M., Jezierski J. et al. (2018). Comparison of the properties of the Alkaline- Phenolic binders for the molding sand for the steel castings. 73rd World Foundry Congress, 23-27 Sep 2018 (pp. 1-2), Krakow, Poland.
  • [8] Kmita, A., Fischer, C., Hodor, K., Holtzer, M. & Roczniak, A. (2016). Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS). Arabian Journal of Chemistry. 2.
  • [9] Ha-International, LLC- US. (2017). International publication number WO2017/10556 A1 dt 22/06/17, International application published under the patent cooperation treaty (PCT).
  • [10] Holtzer, M. & Dańko, R. (2015). Molds and cores systems in foundry. Microstructure and Properties of Ductile Iron and Compacted Graphite Iron Castings. DOI 10.1007/978-3-319-14583-9_2.
  • [11] Bats, C.E. & Scots. W.D. (1977). Decomposition of Resin Binders and the relationship between gases formed and casting surface quality. AFS Transactions. 3(85), 209-226.
  • [12] Naro, R.L. (1999). Porosity defects in Iron castings from Mold Metal Interface reactions. AFS Casting Congress. 15 March 1999, St. Louis- Missouri, USA, 4.
  • [13] Hosadyna, M. et al. (2009). The diffusion of sulphur from moulding sand to cast and methods of its elimination. Archives of Foundry Engineering. 9(4), 73-76.
  • [14] Bauer, W. (1982). Investigations on the disturbance of spheroidal graphite formation in the marginal zone of GGG during casting in para toluene sulfonic acid-cured furan sand foundry practice. 175-183.
  • [15] Ireland, E., Chang K. & Kroker, J. (2002). New Horizon in Nobake Binder Technology. AFS Transactions. 02-025, 1-7.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e6b0c06-9e5e-47d9-9431-65bac125fee2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.