Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Rocznik
Tom
Strony
839--865
Opis fizyczny
Bibliogr. 73 poz., wykr.
Twórcy
autor
- Faculty of the Mechanical Engineering University of Zielona Góra ul. Prof. Z. Szafrana 4, 65-516, Zielona Góra, POLAND
Bibliografia
- [1] Khatib O. (1987): A unified approach for motion and force control of robot manipulators. – EEE Journal on Robotics and Automation, vol.3, No.1, pp.43-53.
- [2] Hsu P., Hauser J. and Sastry S. (1989): Dynamic control of redundant manipulators. – Journal of Robotic Systems, vol.6, No.2, pp.133-148.
- [3] Canudas C., Siciliano B. and Bastin G. (Eds. ) (1996): Theory of Robot Control. – London: Springer.
- [4] Siciliano B., Sciavicco L., Villani L. and Oriolo G. (Eds.) (2010): Robotics: Modelling, Planning and Control. – Springer Verlag.
- [5] Galicki M. (2004): Path following by the end-effector of a redundant manipulator operating in a dynamic environment. – IEEE Transactions on Robotics, vol.20, No.6, pp.1018-1025.
- [6] Kelly R. and Moreno J. (2005): Manipulator motion control in operational space using joint velocity inner loop. – Automatica, vol.41, No.8, pp.1423-1432.
- [7] Nakanishi J., Cory R., Mistry M., Peters J. and Schaal S. (2008): Operational space control: A theoretical and empirical comparison. – The International Journal of Robotics Research, vol.27, No.6, pp.737-757.
- [8] Moreno-Valenzuela J. and Gonzales-Hernandez L. (2011): Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity. – ISA Transactions, vol.50, No.1, pp.131-140.
- [9] Tatlicioglu E., Braganza D., Burg T.C. and Dawson D.M. (2008): Adaptive control of redundant robot manipulators with sub-task objectives. – In Proc. ACC, pp.856-860.
- [10] Sadeghian H., Keshmiri M., Villani L. and Siciliano B. (2012): Priority oriented adaptive control of kinematically redundant manipulators. – In Proc. IEEE RA, pp.293-298.
- [11] Sadeghian H., Villani L., Kesmiri M. and Siciliano B. (2013): Dynamic multi-priority control in redundant robotnic systems. – Robotica, vol.31, No.07, pp.1155-1167.
- [12] Feng, G. and Palaniswami M. (1993): Adaptive control of robot manipulators in task space. – IEEE Trans. Automat. Contr., vol.38, No.1, pp.100-104.
- [13] Zergeroglu E., Dawson D.M., Walker I. and Behal A. (2000): Nonlinear tracking control of kinematically redundant robot manipulators. – In Proc. ACC, vol.4, pp.2513-2517.
- [14] Braganza D., Dixon W.E., Dawson D.M. and Xian B. (2005): Tracking control for robot manipulators with kinematic and dynamic uncertainty. – In Proc. CDC, pp.5293-5297.
- [15] Braganza D., Dixon W.E., Dawson D.M. and Xian B. (2008): Tracking control for robot manipulators with kinematic and dynamic uncertainty. – International Journal of Robotics and Automation, vol.23, No.2, pp.117-126.
- [16] Galicki M. (2007): Adaptive path-constrained control of a robotic manipulator in a task space. – Robotica, vol.25, No.1, pp.103-112.
- [17] Cheah C.C., Liu C. and Slotine J.J. (2006): Adaptive tracking control for robots with unknown kinematic and dynamic properties. – The International Journal of Robotics Research, vol.25, No.3, pp.283-296.
- [18] Li X. and Cheah C.C. (2012): Adaptive regional feedback control of robotic manipulator with uncertain kinematics and depth information. – In Proc. ACC, pp.5472-5477.
- [19] Li X. and Cheah C.C. (2013): Global task-space adaptive control of robot. – Automatica, vol.49, No.1, pp.58-69.
- [20] Galicki M. (2013): Inverse-free control of a robotic manipulator in a task space. – Robotics and Autonomous Systems, vol.62, No.2, pp.131-141.
- [21] Zergeroglu E., Sahin H.T., Ozbay U. and Tektas H.A. (2006): Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria. – In Proc. IEEE Control Appl., pp.2860-2865.
- [22] Ozbay U., Sahin H.T. and Zergeroglu E. (2008): Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria. – Robotica, vol.26, No.06, pp.711-728.
- [23] Singh H.P. and Sukavanam N. (2012): Neural network based control scheme for redundant robot manipulators subject to multiple self-motion criteria. – Mathematical and Computer Modelling, vol.55, No.3, pp.1275-1300.
- [24] Shamir T. and Yomdin Y. (1988): Repeatability of redundant manipulators: Mathematical solution of the problem. – IEEE Trans. Automat. Cont., vol.33, No.11, pp.1004-1009.
- [25] Roberts R.G. and Maciejewski A.A. (1992): Nearest optimal repeatable control strategies for kinematically redundant manipulators. – IEEE Trans. Robot. Automat. vol.8, No.3, pp.327-337.
- [26] Nakamura Y. and Hanafusa H. (1986): Inverse kinematic solutions with singularity robustness for robot manipulator control. – Dyn. Syst. Measurements and Control, vol.108, No.3, pp. 163-171.
- [27] Wampler C. W. and Leifer L. J. (1988): Applications of damped least-squares methods to resolved-rate and resolved-acceleration control of manipulators. – J. Dyn. Syst. Measurements and Control, vol.110, No.1, pp.31-38.
- [28] Seraji H. and Colbaugh R. (1990): Improved configuration control for redundant robots. – J. Robot. Syst., vol.7, No.6, pp.897-928.
- [29] Peng Z.X. and Adachi N. (1993): Compliant motion control of kinematically redundant manipulators. IEEE Trans. Robot. Automat., vol.9, No.6, pp.831-836.
- [30] Ott C., Dietrich A. and Schaffer A.A. (2015): Prioritized multi-task compliance control of redundant manipulators. – Automatica, vol.53, pp.416-423.
- [31] Oh Y. and Chung W.K. (1999): Disturbance observer based motion control of redundant manipulators using inertially decoupled dynamics. – IEEE/ASME Trans. Mechatronics, vol.4, No.2, pp.133-146.
- [32] Colbaugh R. and Glass K. (1995): Robust adaptive control of redundant manipulators. – J. Intell. Robot. Syst., vol.14, No.1, pp.69-88.
- [33] Balleieul J. (1985): Kinematic programming alternatives for redundant manipulators. – In Proc. IEEE Int. Conf. on Robotics and Automation, vol.2, pp.722-728.
- [34] Wolovich W.A. and Elliot H. (1984): A computational technique for inverse kinematics. – In Proc. 23rd IEEE Conference on Decision and Control, pp.1359-1363.
- [35] Siciliano B. (1990): A closed-loop inverse kinematic scheme for on-line joint-based robot control. – Robotica, vol.8, No.3, pp.231-243.
- [36] Kelly R. (1996): Robust asymptotically stable visual servoing of planar robots. – IEEE trans. Rob. Automat., vol.12, No.5, pp.759-766.
- [37] Cheah C.C. (2006): On duality of inverse Jacobian and transpose Jacobian in task-space regulation of robots. – In Proc. IEEE Int. Conf. on Robotics and Automation, pp.2571-2576.
- [38] Cheah C.C., Lee K., Kawamura S. and Arimoto S. (2000): Asymptotic stability control with approximate Jakobian matrix and its application to visual servoing. – In Proc. IEEE Decision and Control, pp.3939-3944.
- [39] Moosavian S.A.A. and Papadopoulos E. (2007): Modified transpose Jacobian control of robotic systems. – Automatica, vol.43, No.7, pp.1226-1233.
- [40] Edwards C. and Spurgeon S.K. (1998): Sliding Mode Control: Theory and Application. – Taylor and Francis: London.
- [41] Utkin V.I. (1992): Sliding modes in Optimization and Control Problems. – New York: Springer.
- [42] Fridman L. (2002): Singularly perturbed analysis of chattering in relay control systems. – IEEE Transactions on Automatic Control, vol.47, No.12, pp.2079-2084.
- [43] Galicki M. (2015): Finite-time control of robotic manipulators. – Automatica, vol.51, pp.49-54.
- [44] Galicki M. (2016): Finite-time trajectory tracking control in a task space of robotic manipulators. – Automatica, vol.67, pp.165-170.
- [45] Galicki M. (2016): Robust task space finite-time chattering-free control of robotic manipulators. – J. Intell. Robot Syst., DOI: 10.1007/s10846-016-0387-3.
- [46] Haessing D. and Friedland B. (1991): On the modeling and simulation of friction. – Transactions of the ASME, Journal of Dynamic Systems, Measurements and Control, vol.113, No.3, pp.354-362.
- [47] Wit C., Ollson H., Astrom K. and Lischinsky P. (1995): A new model for control of systems with friction. – IEEE Trans. Automat. Contr., vol.40, No.3, pp.419-425.
- [48] Han J.D., He Y.Q., Xu W.L. (2007): Angular acceleration estimation and feedback control: An experimental investigation. – Mechatronics, vol.17, No.9, pp.524-532.
- [49] Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. – New York: Wiley.
- [50] Yoshikawa T. (1985): Manipulability of robotic mechanisms. – Int. J. Robotics Res., vol.4, No.2, pp.3-9.
- [51] Maciejewski A.A. and Klein C.A. (1985): Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. – I. J. Rob. Res., vol.4, No.3, pp.109-117.
- [52] Perdereau V., Passi C. and Drouin M. (2002): Real-time control of redundant robotic manipulators for mobile obstacle avoidance. – Robotics and Autonomous Systems, vol.41, No.1, pp.41-59.
- [53] Cruse H. et al. (1990): On the cost functions for the control of the human arm movement. – Biological Cybernetics, vol.62, No.6, pp.519-528.
- [54] Feng Y., Yu X. and Man Z. (2002): Non-singular terminal sliding mode control of rigid manipulators. – Automatica, vol.38, No.12, pp.2159-2167.
- [55] Yu S., Yu X., Shirinzadeh B. and Man Z. (2005): Continuous finite-time control for robotic manipulators with terminal sliding mode. – Automatica, vol.41, No.11, pp.1957-1964.
- [56] Zhao D., Li S. and Gao F. (2009): A new terminal sliding mode control for robotic manipulators. – International Journal of Control, vol.82, No.10, pp.1804-1813.
- [57] Bhat S.P. and Bernstein D.S. (2000): Finite-time stability of continuous autonomous systems. – SIAM Journal on Control and Optimization, vol.38, No.3, pp.751-766.
- [58] Hong Y.G. (2002): Finite-time stabilization and stabilizability of a class of controllable systems. – Systems Control Letters, vol.46, No.4, pp.231-236.
- [59] Bartolini G., Ferrara A. and Punta E. (2000): Multi-input second-order sliding-mode hybrid control of constrained manipulators. – Dynamics and Control, vol.10, No.3, pp.277-296.
- [60] Bartolini G., Ferrara A., Usai E. and Utkin V.I. (2000): On multi-input chattering-free second-order sliding mode control. – IEEE Transactions on Automatic Control, vol.45, No.9, pp.1711-1717.
- [61] Bartolini G., Pisano A., Punta E. and Usai E. (2003): A survey of applications of second-order sliding mode control to mechanical systems. – International Journal of Control, vol.76, No.9-10, pp.875-892.
- [62] Ferrara A. and Capisani L.M. (2011): Second order sliding modes to control and supervise industrial robot manipulators. – In. L. Fridman et al. (Eds.): Sliding modes, LNCIS, Lecture Notes in Control and Information Sciences, vol.412, pp.541-567.
- [63] Filippov A.F. (1988): Differential Equations with Discontinuous Right-hand Side. – Dordrecht, Netherlands.
- [64] Canudas de Wit C., Fixot N. and Astrom K.J. (1992): Trajectory tracking in robot manipulators via nonlinear estimated state feedback. – IEEE Trans. Robot. Automat., vol.8, No.1, pp.138-144.
- [65] ElBeheiry E.M., Zaki A. and ElMaraghy W.H. (2003): A unified approach for independent manipulator joint acceleration control and observation. – ASME Dynamic Systems and Control Division, vol.72, No.1, pp.659-666.
- [66] Khalil H.K. and Praly L. (2014): High-gain observers in nonlinear feedback control. – Int. J. Robust and Nonlinear Control, vol.24, No.6, pp.993-1015.
- [67] Ball A.A. and Khalil H.K. (2013): A nonlinear high-gain observer for systems with measurement noise. – IEEE Trans. Automat. Control, vol.58, pp.569-580.
- [68] De Luca A., Schroder D. and Thummel M. (2007): An acceleration-based state observer for robot manipulators with elastic joints. – In Proc. IEEE International Conference on Robotics and Automation, pp.3817-3823.
- [69] Hsiao T. and Weng M.C. (2013): Robust joint position feedback control of robot manipulators. – J. Dynam. Syst., Measurement, and Control, vol.135, No.3, 031010.
- [70] Davila J., Fridman L. and Levant A. (2005): Second-order sliding mode observer for mechanical systems. – IEEE Trans. Automat. Control, vol.50, No.11, pp.1785-1789.
- [71] Atasi A.N. and Khalil H.K. (2000): Separation results for the stabilization of nonlinear systems using different high-gain observer designs. – Systems and Control Letters, vol.39, No.3, pp.183-191.
- [72] Levant A. and Livne M. (2012): Exact differentiation of signals with unbounded higher derivatives. – IEEE Transactions on Automatic Control, vol.57, No.4, pp.1076-1080.
- [73] Levant A. (2003): Higher-order sliding modes, differentiation and output-feedback control. – International Journal of Control, vol.76, No.9-10, pp.924-941.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e69eb13-111d-4e8e-925c-d14114c0cca6