PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Counterion effects on the alkali dissolution mechanism of quartz

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In gold ore, quartz plays an important role in mineral formation by acting as the follower. Understanding counterion release, transport, and deposition in alkali solution is a prerequisite for evaluating the potential role of gold separate from quartz deposits in pretreatment. In this work, the aggregation, retention, and release of counterion in alkali solution media were investigated by kinetic research and pure mineral experiments, the correlation and mechanism of these processes were revealed by combining geochemical theory, interaction energy calculation, and quantum chemistry. The results showed that the retention and release of counterion were closely related to the dissolution and corrosion rate of quartz. The NH4+ and Fe2+ with higher mineral affinity reduced the quartz stability, and the dispersion stability and mobility of the quartz were greatly improved by an alkaline substance due to the enhancement of steric hindrance effects. Quantum chemical calculation results show that ammonium ion promotes the dissolution of quartz stronger than ferrous ion, which is mainly reflected in reducing the activation energy required for the formation of transition state (TS1), which can be verified by kinetic calculation. These findings provide essential insight into the extraction of gold coated by quartz as well as a vital reference for the experiment of gold-loaded quartz leaching in mineral processing.
Słowa kluczowe
Rocznik
Strony
art. no. 160038
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • College of Mining, Guizhou University, Guiyang, China
  • Mining Engineering and Geology College, Xinjiang Institute of Engineering, Urumqi, China
autor
  • College of Mining, Guizhou University, Guiyang, China
  • Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, China
autor
  • College of Mining, Guizhou University, Guiyang, China
  • Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, China
autor
  • College of Mining, Guizhou University, Guiyang, China
autor
  • College of Mining, Guizhou University, Guiyang, China
autor
  • College of Mining, Guizhou University, Guiyang, China
  • Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, China
Bibliografia
  • ABDEL-AAL, E. A., 2000. Kinetics of Sulfuric Acid Leaching of Low-Grade Zinc Silicate Ore. Hydrometallurgy, 55(3): 247–254.
  • ALI, A. M., YAHYA, N., MIJINYAWA, A., KWAYA, M. Y., SIKIRU, S., 2020. Molecular simulation and microtextural characterization of quartz dissolution in sodium hydroxide. Journal of Petroleum Exploration and Production Technology, 10(7), 2669–2684.
  • ALI, A., PADMANABHAN, E., BAIOUMY, H., 2017. Characterization of Alkali-Induced Quartz Dissolution Rates and Morphologies. Arabian Journal for Science and Engineering, 42, 1–13.
  • ALLEN, N., MACHESKY, M. L., WESOLOWSKI, D. J., KABENGI, N., 2017. Calorimetric study of alkali and alkaline-earth cation adsorption and exchange at the quartz-solution interface. Journal of Colloid and Interface Science, 504: 538–548.
  • AL-SAEDI, H. N., BRADY, P. V., FLORI, R. E., HEIDARI, P., 2019. Insights into the role of clays in low salinity water flooding in sand columns. Journal of Petroleum Science and Engineering, 174, 291–305.
  • ASHRAF, M., ZAFAR, Z. I., ANSARI, T. M., 2005. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy, 80(4), 286–292.
  • BASTRZYK, A., POLOWCZYK, I., SADOWSKI, Z., SIKORA, A., 2011. Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Sep. Purif. Technol. 77, 325-330.
  • CAO, Q., YAN, W., LIU, D., WEN, S., LI, Y. (2023). New insights into pyrite-hydrogen peroxide interactions during froth flotation: experimental and DFT study. Physicochemical Problems of Mineral Processing, 59(1), 157409.
  • CAO, X. W., CHEN, Q. D., HUA, F., ZHANG, L., SAULIUS, J., SUN, H. B., 2018. Liquid-Assisted Femtosecond Laser Precision-Machining of Silica. Nanomaterials, 8(5), 287.
  • CHEN, B., DENG, J., WEI, H., JI, X., 2019. Trace Element Geochemistry in Quartz in the Jinqingding Gold Deposit, Jiaodong Peninsula, China: Implications for the Gold Precipitation Mechanism. Minerals, 9(5), 326.
  • CHIBOWSKI, S., WIŚNIEWSKA, M., WAWRZKIEWICZ, M., HUBICKI, Z., GONCHARUK, O., 2020. Electrokinetic properties of silica-titania mixed oxide particles dispersed in aqueous solution of C.I. Direct Yellow 142 dye – effects of surfactant and electrolyte presence. Physicochemical Problems of Mineral Processing, 56(6), 123612
  • DE ALMEIDA, C. F., DE ANDRADE, R. C., DE OLIVEIRA, G. F., SUEGAMA, P. H., DE ARRUDA, E. J., TEXEIRA, J. A., DE CARVALHO, C. T., 2017. Study of Porosity and Surface Groups of Activated Carbons Produced from Alternative and Renewable Biomass: Buriti Petiole. Orbital - The Electronic Journal of Chemistry, 9(1), 18–26.
  • GUI, Q., WANG, S., ZHANG, L., 2021. The mechanism of ultrasound oxidation effect on the pyrite for refractory gold ore pretreatment. Arabian Journal of Chemistry, 14(4), 103045.
  • HUNTER, N. J. R., VOISEY, C. R., TOMKINS, A. G., WILSON, C. J. L., LUZIN, V., STEPHEN, N. R., 2021. Deformation Mechanisms in Orogenic Gold Systems During Aseismic Periods: Microstructural Evidence from the Central Victorian Gold Deposits, Southeast Australia. Economic Geology, 116(8), 1849–1864.
  • JACKSON, R., ZHANG, W., PEARSON, J., 2021. TSNet: Predicting transition state structures with tensor field networks and transfer learning. Chemical Science, 12(29): 10022–10040.
  • JIAN, W., MAO, J., LEHMANN, B., COOK, N. J., XIE, G., LIU, P., DUAN, C., ALLES, J., NIU, Z., 2021. Au-Ag-Te–rich melt inclusions in hydrothermal gold-quartz veins, Xiaoqinling lode gold district, central China. Economic Geology, 116(5), 1239–1248.
  • LI, H., LI, Z., JIN, J., HAN, Y., LI, Y., 2022. Pore Evolution in Refractory Gold Ore Formed by Oxidation Roasting and the Effect on the Cyanide Leaching Process. ACS Omega. 7(4), 3618-3625.
  • LINDER, D. P., RODGERS, K. R., 2015. Methanethiol Binding Strengths and Deprotonation Energies in Zn(II)–Imidazole Complexes from M05-2X and MP2 Theories: Coordination Number and Geometry Influences Relevant to Zinc Enzymes. The Journal of Physical Chemistry B. 119(37), 12182-12192
  • LIPATIEVA, T. O., LIPATIEV, A. S., KULAKOVA, Y. V., LOTAREV, S. V., FEDOTOV, S. S., PRUSOVA, I. V., SIGAEV, V. N., 2022. Control of Liquid Laser-Induced Etching of Quartz Glass. Glass and Ceramics, 78(9), 345–349.
  • LIU, X., LI, Q., ZHANG, Y., JIANG, T., YANG, Y., XU, B., HE, Y., 2019. Improving gold recovery from a refractory ore via Na2SO4-assisted roasting and alkaline Na2S leaching. Hydrometallurgy, 185, 133–141.
  • MA, J., TANG, Y., YANG, D. Q., PEI, P., 2020. Kinetics of advanced oxidative leaching of pyrite in a potassium peroxy-disulphate solution. Journal of the Southern African Institute of Mining and Metallurgy, 120(2), 165-172.
  • SHINOHARA, Y., TSUBOUCHI, N., 2020. Effect of the electronic state on low-rank coals with Ca2+ ion exchange. Journal of Molecular Structure, 1218, 128544.
  • TAMADA, O., GIBBS, G. V., JR, M. B. B., RIMSTIDT, J. D., 2012. Silica dissolution catalyzed by NaOH: Reaction kinetics and energy barriers simulated by quantum mechanical strategies. Journal of Mineralogical and Petrological Sciences, 107(2), 87–98.
  • TAMANG, S., THAPA, A., CHETTRI, K., DATTA, B., BISWAS, J., 2022. Analysis of dipyridine dipyrrole-based molecules for solar cell application using computational approach. Journal of Computational Electronics, 21(1), 94–105.
  • TANG, Y., LI, G., YANG, Y., MA, J., ZHI, Y., YAO, Y., ZHENG, L., TUO, B., 2021. Oxidation of Gold-Bearing Pyrite by Ammonium Persulfate. Journal of Sustainable Metallurgy, 7(3), 1280–1292.
  • TANG, Y., YANG, D., TANG, L., WANG Y., 2017. Study on two-stage pretreatment non cyanide leaching of micro disseminated refractory gold ore. Mining and Metallurgical Engineering, 37(1), 60-63.
  • WALSH, T., WILSON, M., SUTTON, A., 2000. Hydrolysis of the amorphous silica surface. II. Calculation of activation barriers and mechanisms. The Journal of Chemical Physics, 113, 9191–9201.
  • YANG, D., TANG, Y., TANG, L., WANG, J., WANG, H., 2017. Study on enhanced wet pretreatment of micro disseminated gold ore. Precious metals, 38(4), 44-48+55.
  • ZHANG, J. Y., CHEN, G. L., DONG, J., WANG, P., GONG, X. D., 2020. Design and exploration of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives as energetic materials. Molecular Diversity, 25(4), 2107–2121.
  • ZHANG, S., HAN, G., YU, R., WEN, Z., XU, M., YANG, Y., 2021. The Sustainable Development Path of the Gold Exploration and Mining of the Sanshan Island-Jiaojia Belt in Laizhou Bay: A DID-SVAR Approach. Sustainability, 13(21): 11648.
  • ZHANG, S., LIU, Y., 2014. Molecular-level mechanisms of quartz dissolution under neutral and alkaline conditions in the presence of electrolytes. Geochemical Journal, 48(2), 189–205.
  • ZHANG, Y., LI, Z. H., TRUHLAR, D. G., 2007. Computational Requirements for Simulating the Structures and Proton Activity of Silicaceous Materials. Journal of Chemical Theory and Computation, 3(2), 593–604.
  • ZHANG, Z., SU, W., TANG, B., XU, W., XIONG, Z., GAO, Y., PENG, B., 2017. Effects of isopropyl alcohol and acetic acid on surface roughness of Z‐cut quartz etched by ammonium bifluoride solution. Micro & Nano Letters, 12(10), 781–783.
  • DRZYMALA, J., 2007. Mineral processing. Foundations of theory and practice of minerallurgy. Ofic. Wyd. PWr, Wroclaw, Poland.
Uwagi
This work was supported by the National Natural Science Foundation of China (51864010) and the Plan Project of Science and Technology of Guizhou Province of China (Qiankehe Foundation [2017]1404, Qiankehe Platform Talents [2018]5781, Qiankehe JS [2011]2326 and Qiansheng Special Combination [2012]153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e68f82e-7033-4eee-8692-4ad12658ac90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.