PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An assessment of the reliability of CFRP composites used in nodes of friction after impact of UV-A impacts and thermal shocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes the results of tribological research into epoxy-based composites reinforced with carbon fiber. The composites were subjected to accelerated tests simulating asemi-annual influence of environmental conditions of an elevated temperature, precipitation in combination with an influence of UV-A radiation of 0.83 W/m2 as well as cyclic thermal shocks causing a leap temperature difference of 116.5°C. The process of friction was conducted in conditions of dry friction and wet friction in the presence of water. The authors found apositive influence of a two-month impact of environmental conditions upon increasing wear resistance. They found a reduction in weight in conditions of friction with water. At the same time, a reliability analysis for the same boundary conditions showed an increased risk of critical composite damage. The article indicates areas of safe exploitation of composites and areas of the necessity of withdrawing composites from further exploitation under the assumed environmental and tribological loads.
Słowa kluczowe
Rocznik
Strony
art. no. 174221
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Polish Naval Academy, Faculty of Navigation and Naval Weapons, Poland
  • 33rd Airlift Base, Poland
  • Faculty of Aeronautics, Polish Air Force University, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Poland
Bibliografia
  • 1. Daniewski, K, Kosicka, E, Mazurkiewicz, D. Analysis of the correctness of determination of the effectiveness of maintenance service actions. Management and Production Engineering Review 2018;9(2):20–25,https://doi.org/10.24425/119522
  • 2. Dirikolu A H, Aktas A, Birgoren B. Statistical Analisis of Fracture Strenght of Composite Materials Using Weibull Distribution. Turkish J. Eng. Env. Sci. 2002;26:45–48.
  • 3. Frangopol D M, Recek S. Reliability of fiber-reinforced composite laminate plates. Probabilistic Engineering Mechanics 2003;18(2):119–13, https://doi.org/10.1016/S0266-8920(02)00054-1
  • 4. Gao J, An Z, Ma Q, Bai X. Residual strength assessment of wind turbine rotor blade composites under combined effects of natural aging and fatigue loads. Eksploatacja i Niezawodność – Maintenance and Reliability 2020; 22(4): 601–609, doi:10.17531/ein.2020.4.3
  • 5. ISO 2113:1996: Reinforcement fibres —Woven fabrics —Basis for a specification
  • 6. ISO 4605:1978:Textile glass —Woven fabrics —Determination of mass per unit area
  • 7. ISO 4892-1:2016: Plastics —Methods of exposure to laboratory light sources —Part 1: General guidance
  • 8. ISO 4892-3:2016: Plastics —Methods of exposure to laboratory light sources —Part 3: Fluorescent UV lamps
  • 9. Kolios A J, Proia S. Evaluation of the Reliability Performance of Failure Criteria for Composite Structures. World Journal ofMechanics 2012;2:162–170,https://doi.org/wjm.2012.23019
  • 10. Krzyzak A, Bemowski G, Szczepaniak R, Grzesik N, Gil L. Evaluation of the reliability of composite materials used in aviation. Safety and Reliabilty –Safe Societies in a Changing World, edited by Haugen S., Barros A, van Gulijk C., Kongsvik T., Vinnem J. E., Taylor & Francis Group, London: 2018:2093–2098,https://doi.org/10.1201/9781351174664-263
  • 11. Krzyzak A, Racinowski D, Szczepaniak R, Mucha M, Kosicka E. The Impact of Selected Atmospheric Conditions on the Process of Abrasive Wear of CFRP. Materials 2020, 13, 3965,https://doi.org/10.3390/ma13183965
  • 12. Krzyżak A. Wybrane aspekty niezawodności kompozytów polimerowych wzmocnionych bawełną. Logistyka 2015; 3: 2634-2639
  • 13. Kundzewicz Z W, Piniewski M, Mezghani A, Okruszko T, Pińskwar I, Kardel I, et al. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophysica 2018,66(6):1509–1523,https://doi.org/10.1007/s11600-018-0220-4
  • 14. Laminating resin LG 285: Technical data sheet, GRM SYSTEMS, 11.04.2012
  • 15. Lopes H, Silva SP, Machado J. A simulation strategy to determine the mechanical behaviour of cork-rubber composite pads for vibration isolation. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(1): 80–88, https://doi.org/10.17531/ein.2022.1.10
  • 16. Michnej M, Młynarski S, Pilch R, Sikora W, Smolnik M, Drożyner P. Physical and reliability aspects of high-pressure ammonia water pipeline failures. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24 (4): 728–737, http://doi.org/10.17531/ein.2022.4.13
  • 17. Moreno A, Hasenauer H. Spatial downscaling of European climate data. International Journal of Climatology 2015;36:1444–1458.https://doi.org/10.1002/joc.4436
  • 18. Naresh K, Shankar K, Velmurugan R. Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites. Composites Part B: Engineering 2018;133(15):129–144,https://doi.org/10.1016/j.compositesb.2017.09.002
  • 19. Niewczas A, Rymarz J, Debicka E. Stages of operating vehicles with respect to operational efficiency using city buses as an example. Eksploatacja i Niezawodnosc -Maintenance and Reliability 2016;21(1):21-27,https://doi.org/10.17531/ein.2019.1.3
  • 20. Nowakowski T. Problems of reliability modelling of multiple-phased systems. Eksploatacja iNiezawodnosc -Maintenance and Reliability 2011;4:79–84
  • 21. Oliveira M S, da Costa Garcia Filho F, Pereira A C, Nunes L F, da Luz F S, de Oliveira Braga F, Colorado H A, Monteiro S N. Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis. Journal of Materials Research and Technology 2019;8(6):5899–5908. https://doi.org/10.1016/j.jmrt.2019.09.064
  • 22. Ostrowski K. Zmienność natężeń dopływających do skrzyżowania z sygnalizacją w analizach niezawodności ich funkcjonowania. Prace Naukowe Politechniki Warszawskiej. Transport 2013; 95: 391–400
  • 23. Paska J, Marchel P. Electronic Model of Non-repairable Item’s Reliability. Przegląd Elektrotechniczny 2015;2:137-141, https://doi.org/10.15199/48.2015.02.32
  • 24. Pieniak D, Niewczas A M, Kordos P. Influence of thermal fatigue and ageing on the microhardness of polimer-ceramic composites for biomedical applications. Maintenance and Reliability –Ekploatacja i Niezawodnosc 2012;14:181–188
  • 25. Saghafi A, Mirhabibi A R, Yari G H. Improved linear regression method for estimating Weibull parameters. Theoretical and Applied Fracture Mechanics 2009;52:180–182, https://doi.org/10.1016/j.tafmec.2009.09.007
  • 26. Skoć A, Spałek J. Podstawy konstrukcji maszyn t.1. WNT, Warszawa: 2013. ISBN: 9788363623784
  • 27. Sobaszek L, Gola A, Swic A. Creating robust schedules based on previous production processes.Actual Problems of Economics2014; 158(8): 488–495, doi:10.1007/978-3-030-78170-5_6
  • 28. Wetherhold R C, Ucci A M. Probability techniques for reliability analysis of composite materials. NASA Technical Report 195294, 1994
  • 29. Yadav O P, Singh N, Goel P S. Reliability demonstration test planning: A three dimensional consideration. Reliability Engineering and System Safety 2006;91:882–893, https://doi.org/10.1016/j.ress.2005.09.001
  • 30. Yang G. Reliability Definition, Metrics, and Product Life Distributions. Life Cycle Reliability Engineering, John Wiley & Sons, Inc.: 2007. ISBN: 9780470117880,https://doi.org/10.1002/9780470117880
  • 31. Zhou X-Y, Gosling P D , Ullah Z, Kaczmarczyk Ł, Pearce C J. Exploiting the benefits of multi-scale analysis in reliability analysis for composite structures. Composite Structures 2016;155:197–212,https://doi.org/10.1016/j.compstruct.2016.08.015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e677052-2dc0-43b3-841f-a66fdb33aecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.