PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time performance of RGB to HSI colour space transformation methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present paper is a continuation of works on evaluation of red, green, blue (RGB) to hue, saturation, intensity (HSI) colour space transformation in regard to digital image processing application in optical measurements methods. HSI colour space seems to be the most suitable domain for engineering applications due to its immunity to non-uniform lightning. Previous stages referred to the analysis of various RGB to HSI colour space transformations equivalence and programming platform configuration influence on the algorithms execution. The main purpose of this step is to understand the influence of computer processor architecture on the computing time, since analysis of images requires considerable computer resources. The technical development of computer components is very fast and selection of particular processor architecture can be an advantage for fastening the image analysis and then the measurements results. In this paper the colour space transformation algorithms, their complexity and execution time are discussed. The most common algorithms were compared with the authors own one. Computing time was considered as the main criterion taking into account a technical advancement of two computer processor architectures. It was shown that proposed algorithm was characterized by shorter execution time than in reported previously results.
Rocznik
Strony
111--128
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
  • Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
  • Department of Fundamental Research in Energy Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
Bibliografia
  • [1] Fornalik E., Leiner W., Szmyd J.S., Kowalewski T.: Experimental simulation of mixed convection. 4th Baltic Heat Transfer Conference, Kaunas, Lithuania, 2003, Begell House Inc., Advances in Heat Transfer Engineering, New York, ISBN 1-56700- 198-1, ISBN 9986-492-78-5, 339–346.
  • [2] Fornalik E., Nakabe K., Yamamoto Y., Chen W., Suzuki K.: Visualization of heat transfer enhancement regions modified by the interaction of inclined impinging jets into crossflow. MG&V 8(1999), 4, 597–609.
  • [3] Bednarz T., Fornalik E., Tagawa T., Ozoe H., Szmyd J.S.: Convection of paramagnetic fluid in a cube heated and cooled from side walls and placed below a superconducting magnet: comparison between experiment and numerical computations. Therm. Sci. Eng. 14(2006), 4, 107–114.
  • [4] Kowalewski T.A.: Particle Image Velocimetry and Thermometry using Liquid Crystals. In: Proc. FLUVISU 99, 8me colloque nationale de visualisation et de traitment d’images en mecanique des fluids, Toulouse, June 1-4, 1999, ENSICA, 33–48, http://fluid.ippt.pan.pl/papers/fluvis99_tkowale.pdf
  • [5] Stasiek J., Jewartowski M., Kowalewski T.A.: The use of liquid crystal thermography in selected technical and medical applications. J. Crystall. Process . Technol. 4(2014), 1, 46–59.
  • [6] Stasiek J., Stasiek A., Jewartowski M., Collins M.W.: Liquid crystal thermography and true-colour digital image processing. Opt. Laser Technol. 38(2006), 4–6, 234–256.
  • [7] Kowalewski T.A., Cybulski A., Rebow M.: Particle Image Velocimetry and Thermometry in Freezing Water. In: Proc 8th Int. Symp. Flow Visualization, Sorrento, Sept. 1-4, 1994.
  • [8] Piasecka M., Strąk K., Maciejewska B.: Calculations of flow boiling heat transfer in a minichannel based on liquid crystal and infrared thermography data. Heat Transfer Eng. 38(2017), 3, 332–346.
  • [9] Mikielewicz D., Wajs J., Gliński M., Zrooga A.-B.R.S.: Experimental investigation of dryout of SES 36, R134a, R123 and ethanol in vertical small diameter tubes. Exp. Therm. Fluid Sci. 44(2013), 556–564.
  • [10] Mikielewicz D., Mikielewicz J., Wajs J., Gliński M.: Modelling of dryout process in an annular flow. Heat Transfer Res. 39(2008), 7, 587–596 (doi:10.1615/HeatTransRes.v39.i7.30).
  • [11] Wajs J., Mikielewicz D.: Determination of dryout localization using a fiveequation model of annular flow for boiling in minichannels. Arch. Thermodyn. 38(2017), 1, 123–139 (doi: 10.1515/aoter-2017-0007).
  • [12] Ziemba A., Fornalik-Wajs E.: Transformation of colour space dedicated to an experimental analysis fulfilling the applicability criteria. J. Phys. Conf. Ser. 530(2014), 012047, (doi:10.1088/1742-6596/530/1/012047).
  • [13] Ziemba A., Fornalik-Wajs E.: Evaluation of colour space transformation suitability to optical temperature measurements. J. Physics Conf. Ser. 745(2016), 032108, (doi: 10.1088/1742-6596/745/3/032108)
  • [14] Kowalewski T.A.: Thermochromic Liquid Crystals, in Handbook of Experimental Fluid Mechanics. (C Tropea, A Yarin and J F Foss Eds.), Berlin, Heidelberg: Springer–Verlag, Chapt. B7.1, 487–500, 2007.
  • [15] Russ J.C.: The Image Processing Handbook, 4th edn. CRC Press LLC Boca Raton, London, New York, Washington D.C. 2002.
  • [16] Sharma G.: Digital Color Imaging Handbook. CRC Press, Boca Raton 2002.
  • [17] Bunting F.: The ColorShop Color Primer. Light Source Computer Images, Inc. An X-Rite Company, 1998.
  • [18] Gonzalez R.C., Woods R.E.: Digital Image Processing, 2nd Edn. Prentice Hall Upper Saddle River, New Jersey 2002.
  • [19] Park H.G., Dabiri D., Gharib M.: Digital Particle Image Velocimetry/Thermometry and Application to the Wake of Heated Circular Cylinder. Exp. Fluids 30(2001), 3, 327–338.
  • [20] Dabiri D., Gharib M.: Digital particle image thermometry: The method and implementation. Exp. Fluids 11(1991), 2-3, 77–86.
  • [21] Hay J.L., Hollingsworth T.H.: A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals. Exp. Therm. Fluid Sci. 12(1996), 1, 1–12.
  • [22] Smith A.R.: Color Gamut Transform Pairs. In: SIGGRAPH ’78 Proc. 5th annual Conf. on Computer Graphics and Interactive Techniques (New York: ACM), Vol. 12, 12–19.
  • [23] Foley J.D. van Dam A., Feiner S.K., Hughes J.F.: Computer Graphics: Principles and Practice in C, 2nd Edn. Addison–Wesley, 1996.
  • [24] http://www.oracle.com/technetwork/java/javase/downloads/index.html (accessed 16.03.2018)
  • [25] Palus H., Bereska D.: The comparison between transformations from RGB colour space to IHS colour space, used for object recognition. In: Proc. 5th Int. Conf. Image Processing and its Applications, Edinburgh, July 4-6, 1995, doi:10.1049/cp:19950775.
  • [26] http://docs.oracle.com/javase/8/docs/api/index.html
  • [27] http://lolengine.net/blog/2013/01/13/fast-rgb-to-hsv (accessed 16.03.2018)
  • [28] http://docs.oracle.com/javase/8/docs/technotes/guides/vm/server-class.html (accessed 16.03.2018)
Uwagi
EN
The present work was supported by the Polish Ministry of Science (Grant AGH No. 11.11.210.312).
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e62610a-65d8-4115-b4c2-c6b28b5a82de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.