PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waste frying oil modified bitumen usage for sustainable hot mix asphalt pavement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Asphalt concrete is composed primarily of aggregate and asphalt binder. By volume, a typical Hot Mix Asphalt (HMA) mixture is about 85% aggregate, 10% asphalt binder, and 5% air voids. Bitumen is very important as a binder material in asphalt concrete. However, the cost of the bitumen is relatively high. For this reason, highway professionals are looking for modifiers to decrease the bitumen content used in the asphalt pavement. In this study, waste frying oil (WFO) is used as a modifier to modify the bitumen. As a result, by adding WFO into the bitumen, optimum binder content of a mixture was decreased from 5.125% down to 4.575%. So that, roads constructed with WFO modified bitumen are sustainable because of decreasing the bitumen rate used in the mixture. In addition, softening point of the modified bitumen is decreased (up to 82%) while the penetration value is increased (up to 240%) by modifying the bitumen with WFO. The tensile strength ratios of the modified asphalt specimens are all above the minimum specification limit, 80%. Finally, required temperature for fast self-healing is decreased by modifying the bitumen with WFO. Specimens prepared with WFO modified bitumen are healed compared to the reference specimen.
Rocznik
Strony
863--870
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
autor
  • Suleyman Demirel University, Engineering Faculty, Department of Civil Engineering, Isparta, Turkey
  • Suleyman Demirel University, Engineering Faculty, Department of Civil Engineering, Isparta, Turkey
autor
  • Suleyman Demirel University, Engineering Faculty, Department of Civil Engineering, Isparta, Turkey
autor
  • Suleyman Demirel University, Engineering Faculty, Department of Civil Engineering, Isparta, Turkey
Bibliografia
  • [1] A. Adedeji, T. Grunfelder, F.S. Bates, C.W. Macosko, M. Stroup- Gardiner, D.E. Newcomb, Asphalt modified by SBS triblock copolymer: structures and properties, Polymer Engineering and Science 36 (1996) (1996) 1707–1723.
  • [2] X. Lu, U. Isacsson, Modification of road bitumens with thermoplastic polymers, Polymer Test 20 (2001) (2001) 77–86.
  • [3] F. Rosillo-Calle, L. Pelkmans, A. Walter, A Global Overview of Vegetable Oils, with Reference to Biodiesel. A Report for the IEA Bioenergy Task 40, 2009.
  • [4] H. Sanli, M. Canakci, E. Alptekin, Characterization of waste frying oils obtained from different facilities, in: World Renewable Energy Congress, Linköping, Sweden, 8–13 May, 2011.
  • [5] H. Asli, E. Ahmadinia, M. Zargar, M.R. Karim, Investigation on physical properties of waste cooking oil – rejuvenated bitumen binder, Construction and Building Materials 37 (2012) (2012) 398–405.
  • [6] M. Chen, B. Leng, S. Wu, Y. Sang, Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders, Construction and Building Materials 66 (2014) (2014) 286–298.
  • [7] H. Wen, S. Bhusal, B. Wen, Laboratory evaluation of waste cooking oil-based bioasphalt as an alternative binder for hot mix asphalt, Journal of Materials in Civil Engineering (2013) 1432–1437. , http://dx.doi.org/10.1061/(ASCE)MT.1943- 5533.0000713.
  • [8] M. Zargar, E. Ahmadinia, H. Asli, M.R. Karim, Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen, Journal of Hazardous Materials 233– 234 (2012) (2012) 254–258.
  • [9] J.F. Su, J. Qiu, E. Schlangen, W.Y.Y., Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: in situ rejuvenation for aged bitumen, Construction and Building Materials 74 (2015) (2015) 83–92.
  • [10] AASHTO, Standard specification for Superpave volumetric mix design, American Association of State Transportation and Highway Officials, Washington, D.C, 2001.
  • [11] J.A. Scherocman, K.A. Mesch, J.J. Proctor, The effect of multiple freeze-thaw cycle conditioning on the moisture damage in asphalt concrete mixtures, Proceedings of the Association of Asphalt Paving Technologists 55 (1986) 213– 236.
  • [12] D.A. Gordon, C. Young-Kyu, State of the art report on moisture sensitivity test, Road Materials and Pavement Design (3.4) (2002) 355–372.
  • [13] R.P. Lottman, NCHRP Report 246: Predicting Moisture-Induced Damage to Asphaltic Concrete – Field Evaluation, Transportation Research Board, National Research Council, Washington, DC, 1982.
  • [14] B. Choubane, G.C. Page, J.A. Musselman, Effects of different water saturation levels on the resistance of compacted HMA samples to moisture induced damage, Journal of the Transportation Research Board 1723 (2000) 97–106.
  • [15] General Directorate of Highways (GDH), Highway Technical Specifications, Turkey General Directorate of Highways, Ankara, 2013.
  • [16] S. Sarsam, A. Alwan, Impact of moisture damage on rutting resistance, shear and tensile properties of asphalt pavement, International Journal of Scientific Research in Knowledge 2 (10) (2014) 453–462.
  • [17] A. Tabakovic, E. Schlangen, Self-healing technology for asphalt pavements, in: M.D. Hager, U.S. Schubert, S. Zwaag (Eds.), Advances in Polymer Science, Springer, Berlin Heidelberg, 2015 1–22.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e602cbb-f0d6-4382-bbf3-5ba163022bf9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.