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Abstract: In this paper, the Riemann solution of an extended Riemann problem in channel
networks is presented. The Riemann problem at a junction network is well defined in the
literature. However, it is limited to symmetric networks. Here, we extend the Riemann problem
to non-symmetric networks such that neither the channel width equality nor the discharge
equality are assumed. The Riemann solution is given under subcritical flow conditions to ensure
the existence and uniqueness of the solution at the junction. Taking into account the mass
and energy conservation laws, the necessary conditions for the Riemann solution are drawn.
The results are summarized in a theorem. The theorem is illustrated with a set of numerical
examples.

In order to perform a one-dimensional simulation in channel networks, the inner boundary
conditions at the junction (i.e., the channel intersection point) are required. It has turned out
that the classical models (i.e., the Equality, Gurram, Hsu models) that have been used to supply
such a boundary suffer from many drawbacks.

Thus, here we propose to use the Riemann solution at the junction networks to provide
proper boundary conditions. Then, we compare all the junction models together. The junction
models are validated against experimental results found in the literature for steady state flows.
Generally, the Riemann model shows good results in matching the experimental data. In
particular, the Riemann model shows the best results when the bottom discontinues at the
junction. For the unsteady state flows, we perform prototype case studies to test the junction
models in the channel networks, and the numerical solutions are compared with the analytical
solutions. The Riemann model continues to show the best results that agree with the analytical
solutions. However, the validation of the junction models in the unsteady state flows remains
for future work due to the limited amount of real data.

Keywords: channel network, Riemann problem, subcritical flows, channel junctions; open
channel flows, subcritical flows
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Abbreviations

PDE Partial Differential Equations
SWE Shallow Water Equations
1D One-Dimensional
CFL Courant Fredrich Lewy stability criterion
SST Steady State Transition
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Symbols

constant

system matrix

polynomial parameter

channel width

constant

polynomial parameter

wave celerity

fluctuations

specific energy

Froude number

€rrors

relative percentage error

Flux function

function

point quadrature rule

weights

water depth

depth maximum of left locus curve
depth minimum of right locus curve
depth component of intermediate state
critical depth

water depth component in the junction curve
spatial index (i=1,2,3)

channel index (k=1,2,3)

channel length

norm error

mesh cell number

total discharge

specific discharge

discharge maximum of left locus curve
discharge minimum of right locus curve
specific discharge reference

specific discharge component of intermediate state
water discharge component in the junction curve
eigenvector

water velocity

water velocity reference

vector of conservative variables

vector of non-conservative variables
vector source term

parameter (s € [0,1])

time
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time step

vector of cell average of the non-conservative variables
depth ratio

space

junction node position

spatial step

initial left state vector

initial right state vector

intermediate state vector

state minimum or maximum of locus curves
general discharge ratio

rarefaction curve

backward rarefaction curve

discharge ratio

channels width ratio

junction curve

sub-index refer to initial value

bed slope

slope friction

shock speed

shock curve

backward shock curve

depth function

maximum depth value of the junction function
bottom elevation difference at the junction
bottom elevation

eigenvalue
an auxiliary variable ()

left locus function

right locus function

left locus curve

right locus curve

non-dimensional water depth
non-dimensional water specific energy

angle between representative lateral velocity and
main channel direction

momentum correction coefficient

energy correction coefficient

line integral path

function

function

non-dimensional polynomial parameter
discriminant

junction angle

angle between main upstream and downstream channels
boundary edge index

non-dimensional bottom elevation difference
polynomial angle

non-dimensional polynomial parameter
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1. General introduction and paper outline

1.1. The power of one-dimensional shallow water system

In general, the one-dimensional (1D) shallow water equations (SWE) system
has been widely used in water flow simulations [1], where it has been used in single
open channels, supported by theoretical findings, see, for example [2—4]. In the
recent years, the technology has had a direct impact on the numerical field where
high performance computers can easily handle two (2D) and three dimensional
(3D) simulations in competitive running time. However, large domains such as
rivers that run over thousands of kilometres [5] can limit such facilities. The
question whether the use of 2D or 3D models is the best choice for an imagine
channel network consisting of thousands of branches and nodes that can be
hundreds of kilometres long. Examples of natural junction networks are river
bifurcations as seen in Figures 1-3. The computational cost in large networks as
such rivers basins remains an obstacle to use 2D and 3D models rather than a 1D
model. In the 2D or 3D cases the program running time could be few days or
even more. For this reason, the 1D-SWE system remains preferable even with the
development of 2D and 3D simulation tools.

Although well known, the 1D-SWE system itself is still a very interesting
field of research. It has been used to simulate the water flow in open channel
networks [6], however, mathematical difficulties have appeared at the junction
network [7]. These difficulties will be addressed in the present paper.
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Figure 1. The Blue Nile and the White Nile confluence image taken by Landsat 8 (data
available from U.S. geological survey)
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Figure 2. The Nile confluence in Egypt, image taken by Landsat 8 (data available from U.S.
geological survey)
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Figure 3. The Nile river basin image taken by Landsat 8 (data available from U.S.
geological survey)



14 M. A. S. I. Elshobaki

1.2. Restriction on using one-dimensional shallow water
equations system in channel networks

The 1D-SWE system cannot be used directly at the junction network, where
the system becomes singular at the junction. Special methods are required to use
the 1D-SWE system at the junction in order to resolve this singularity. It may
be useful to use energy and momentum balances at the junction to avoid such
singularities in the mathematical model. Many research studies in the literature
such as [8—12] depend on energy and momentum balances and suffer from their
empirical formulations that limit their ability to address more realistic cases.

1.3. Objectives and organization of the paper

The objectives formulated and accomplished in the paper are as follows:

e The 1D-SWE are redefined at the junction network, taking into account
parameters such as the channel width and bed elevation variations at the
junction.

e The Riemann problem for the 1D-SWE is defined at the junction in a way
avoiding the singularity problem.

e The Riemann problem at the junction is solved recursively, where numerical
and geometrical interpretations are given.

e The Riemann solution is mathematically investigated by proving the exi-
stence and uniqueness of the solution at the junction, and the necessary
conditions to guarantee such results are given.

e The Riemann solution is used as a model to provide the inner boundary
conditions for the 1D simulations of channel network flows.

e The Riemann model is compared to classical models in providing the inner
boundary conditions.

e All models were tested versus analytical solutions and experimental data.

The paper is organized as follows.

Chapter 2 introduces the partial differential equations of a 1D-SWE sys-
tem. The SWE properties are given by defining the critical curve. The subcritical
and supercritical curves are based on the loci and integral curves. The hyperbo-
licity of the SWE is discussed. The SWE are strictly hyperbolic under subcritical
flow conditions. Some useful lemmas are drawn to be used in further Chapters.
The corresponding standard Riemann problem of the 1D-SWE is discussed. A new
viewpoint at the Riemann solution is given, based on the geometrical relations
between the critical and subcritical curves. Finally, some numerical examples are
given.

Chapter 3 shows the Riemann problem for the junction at a junction ne-
twork with channel width variation and bottom discontinuities at the junction.
The Riemann solution is given under subcritical flow conditions. The necessary
conditions to ensure the existence and uniqueness of the solution are discussed.
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They are associated with such physical interpretation as mass-energy conserva-
tions. The junction curves that satisfy the mass-energy conservation at the junc-
tion are explained to complete the Riemann solution. Finally, numerical examples
are given at the end of the Chapter to illustrate the Riemann solution for the
junction from both the geometrical and numerical point of view.

Chapter 4 validates the Riemann problem for junctions in supplying the
inner boundary conditions. 1D numerical simulations of the channel network flow
are performed. The Riemann model is used together with other models to supply
the inner boundary conditions. Other models such as the Equality, Gurram, and
Hsu models are modified to fit the presented case studies. The experimental
data is used to validate each model. Furthermore, analytical solutions are also
used to be compared with the numerical results, where the numerical results
are produced by the junction models (the Riemann, Equality, Gurram, and Hsu
models). Symmetric and non-symmetric confluences are addressed in this Chapter.

Chapter 5 summarizes the results. The Riemann solution for the junction
is validated. The advantages and disadvantages of each junction model are
highlighted and discussed. Finally, recommended and possible future works are
mentioned.

2. One-dimensional shallow water equations

2.1. Introduction

The shallow water equations (SWE) have been widely used to describe
steady and unsteady flows. They represent a simple mathematical model to
describe incompressible flows and water waves [13]. Furthermore, they draw more
attention from the mathematical point of view because they form the basis
of many mathematical models used in simulations of natural phenomena. The
currents in oceans, seas, lakes and rivers as well as atmospheric flows can be
successively described by the SWE. The SWE are similar to the gas dynamics
equations but they are simpler in treatment and manipulation [14]. Looking at
any of the handbooks in open channel hydraulic [15, 16], hyperbolic conservation
laws [17], or numerical methods [18, 14], we realize the importance of the SWE.
Mathematically, the SWE are a class of hyperbolic partial differential equations.
They are considered to be a conservative system for the zero source term. For the
non-zero source term, they are a system of balance laws. Therefore, the hyperbolic
theory in both conservative and non-conservative form can be applied to the
SWE [19].

The SWE are written in space and time. Therefore, they can be used to
describe unsteady flows. Taking into account the spatial variation only, the SWE
are used to describe steady flows. The SWE are also called Saint-Venant equations
in the 1D form. For the first time, they were derived by [2]. The SWE are
a particular case of Navier-Stokes equations [20] which is obtained by integrating
mass and momentum equations over the depth. The horizontal length scale is
considered much greater than the vertical length scale.
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Motivated by the importance of the SWE, many researches have been
concerned about the development of theoretical and numerical treatments of
the SWE in a single open channel. In such case, the analytical solutions of
the SWE are defined as self-similarity solutions. The solutions combine two
dependent space-time variables into one variable by a linear combination using
the Rankine-Hugoniot conditions or the Riemann invariant relationships for their
corresponding Riemann problems. Solutions are obtained for two different cases.

The first case treats the SWE with the zero source term. The corresponding
Riemann problem is solved. The self-similarity solutions are directly obtained
by applying the Rankine-Hugoniot and the Riemann invariant for the shock
and rarefaction waves, respectively. The solutions depend heavily on the nature
of the flow which is either subcritical or supercritical. For the subcritical flow,
self-similarity solutions consist of two waves that spread into the left and right
directions, associated with the left and right characteristic lines, respectively. Each
wave is either a shock or a rarefaction wave. As for the supercritical flow, the two
waves propagate in the same direction, more details can be found in [14].

The second case is due to the complexity of the bottom geometry in real
life applications. The Riemann problem of the SWE with the non-zero term is
extensively treated in the literature, where the bottom is discontinuous. It is the
works by [3, 4, 21] that are appreciated among the vast literature. Using the total
heat and mass conservation over the bed step, [3] shows how very rich the SWE
solutions are. At least 20 different configurations are presented in contrast with
only four in the case of the Riemann problem in a single channel of a flat bed. [4]
establishes the existence of two-parameter wave sets instead of wave curves. The
Riemann solution is constructed. It depends continuously on the left-hand or
right-hand sides of the initial states. The Riemann solution does not always exist.
In this case, even if the solution exists, it is non-unique and the Riemann problem
can admit up to three distinct solutions for different ranges of left-hand and
right-hand initial states for the resonance case. [21] presents an exact solution to
the SWE with a discontinuous bottom topography, where two certain assumptions
are made. Both the conservation of mass and momentum are used to derive the
Rankine-Hugoniot conditions across the bottom step in addition to the entropy
condition to be fulfilled. No transition between subcritical and supercritical flow
conditions is allowed over the bottom step. Therefore, the self-similar solution
of the 1D-SWE is shown to be unique and can be computed by solving a set
of algebraic equations. Mathematically, the Riemann solution of the 1D-SWE in
a single channel is rather well established in the literature.

The purpose of this Section is to form the background that will be used
as a tool in the further considerations. The 1D-SWE as well as their solution in
a single open channel are presented. In particular, the solution of the Riemann
problem of the 1D-SWE is discussed. The wave curves are defined to play an
important role for achieving the overall aim of this thesis. The rest of the Chapter
is organized as follows: in Section 2.2, we present the mathematical formulation of
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the 1ID-SWE in a single open rectangular channel. Some useful Lemmas are given
in Section 2.3. In Section 2.4, we highlight the Riemann problem of the SWE
and its classical standard solution. A set of numerical examples are performed in
Section 2.5 to justify the Riemann solution. Finally, the topic of the Chapter is
summarized in Section 2.6.

2.2. Mathematical model

As stated in the introduction, the 1D-SWE, also known as Saint-Venant
equations are defined as a mathematical model to describe an open channel flow
in a single channel (Figure 4) by considering that the vertical depth scale is small
with respect to the horizontal length scale. Also, the SWE are a particular case
of the Navier-Stokes equations, obtained by integrating the mass and momentum
equations over the depth. The 1D-SWE can be written in a conservative form as:

oU OF
—+—=8,i L],teR" R 1
50 T oy =S [0, L],teRT,z € (1)
with
h hu 0
U= , F= 2|, S= 2
NI N S R
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inﬂol:> outflow
hy (water depth) I::h>
A4 A

z bottom elevation
7. reference datunl PI777777777777 7777777777777 7777777777777777777777777777777777777+

Figure 4. Single open channel flow

where v and h are the flow velocity and the flow depth, respectively. L is the
channel length. g is the gravitational acceleration. S, = —% is the bed slope and
z is the bottom elevation. Sy is the friction slope computed by taking into account
the Manning’s formula [15] due to the friction force exerted between the fluid and
the bottom materials. Physically, the friction term can be neglected if the channel
length is small. Therefore, the Riemann solution is associated to the frictionless
case [3], where the friction slope is neglected. It is assumed here to be equal to
zero. The flat bottom elevation is considered along the channel. Equation (1) can
be cast in a quasi-linear form. This allows considering the bottom elevation as
a state variable. Indeed, the movable bed can be present as an important feature

in the river geomorphology. However, in this paper we restrict ourselves to a fixed
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bottom. At the same time, the state variable z is kept constant in the time variable,
for simplicity. Indeed, the 1D-SWE are written in a quasi-linear form as follows:

ov 0

EJFA(V)&—::O, in[0,L],teR*, z €R (3)
with
h 0 1 0
v= {hu , A(v)= [cQ—u2 2u gh} (4)
z 0 0 0

The quasi-linear form in Equation (3) allowed [4] to theoretically investigate the
Riemann problem in case of a discontinuous bottom. The matrix A is not the
Jacobian matrix for the flux function as for the strictly hyperbolic system. Here,
the matrix A has three real distinct eigenvalues A; with indices i=1,2,3:

NV =F—e Mv)=7+e, Ag(v)=0 (5)
where ¢ = \/gh is the wave celerity. ¢ = hu is the specific discharge. The corre-
sponding eigenvectors can be chosen as follows:

1 1 gh
r(v)= !Z—Jﬁ], ry(v) = [Z+\/@ » r3(v) = { 0 } (6)
0 0 u?—gh

2.2.1. Critical curves

The critical curves can be defined as curves which separate the subcritical
flow and the supercritical flow. Indeed, from the eigenvalues and their correspon-
ding eigenvectors, the first and the third characteristics field coincide as:

(A1 (V),r1(v) = (A3(v),r5(v)) (7)

on a hypersurface and can be identified as the right critical curve as:

Ct:={(h,q,2)la="h/gh} (8)

Similarly, the second and the third characteristic fields coincide as:

(A2 (V),r2(v)) = (A3(v),r5(v)) 9)

on a hypersurface which is identified by the left critical curve as:

C:={(h,q;2)lg=—h\/gh} (10)
Here, the first and the third characteristic fields (A\;,r;) and (Ay,r,) are genuinely
nonlinear. The third characteristic field (Ag,r5) is linearly degenerate such that

— VA (V)1 (V) =V (v).ry(v) = g\/;h #0,andVA;(v).rg(v)=0  (11)

A very important parameter for the SWE is the Froude number Fr= %, particu-
larly for a free surface flow. The flow is said to be subcritical if Fr < 1, critical if

Fr=1, and supercritical if Fr > 1. The critical curves are rewritten as follows:

Ct:={q=h/gh}, C:={q=—hy/gh} (12)
Due to the condition given in Equation (11) that leads to the coincidence of
the characteristic fields, the SWE system loses its hyperbolicity and therefore the
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system (3) is not a strictly hyperbolic system, for more details, we recommend
the work of [22] which provides a fair explanation of the role of hyperbolicity for
the SWE system and how it can be beneficial for both analytical and numerical
treatments of such a system. Under the subcritical flow conditions, we can see that
the SWE system is always strictly hyperbolic and that the theory of hyperbolic
systems can be applied thereto. In other words, the strict hyperbolicity is not
connected if we consider all ranges of the flow (subcritical, transitional, and
supercritical) and therefore the Riemann problem becomes more delicate to solve.
Indeed, enforcing the subcritical condition allows establishing the solution of the
Riemann problem and it is proved later on. In natural channel networks, the
Froude number Fr is generally small, therefore, considering the Fr number smaller
than 1 (4.e. subcritical) only will not limit the practical utility of our analysis. For
this motivation, we restrict ourselves to the subcritical flow conditions for the rest
of the thesis. This restriction is mandatory for the development of the junction
Riemann problem theory in the next Chapter. Figure 5 shows the critical curves
parameterized as a function of the water depth where the area between the two
curves refers to the subcritical flow and the shadow areas above the right critical
curve and below the left curve refer to the supercritical flow. Along the critical
curves the SWE lose their hyperbolicity [22].

3

h

Figure 5. Left and right critical curves

2.3. Loci and integral curves

In this Section we define the wave curves that will be used to give the
Riemann solution later on. Giving a constant left state v, = (h,,q,,%,), the
system (1) has two elementary waves (shock waves and rarefaction waves) such
that the shock curves consist of all right hand states v = (h,q,z) that can be
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connected to the left states by shock waves. Indeed, system (1) implies that the
left and the right states are connected by the Rankine-Hugoniot relations [17].
Thus, by applying the Rankine-Hugoniot relation to the SWE system (3) we have

—S[h—h,) + [hu—h,u,| =0 (13)

2 2
(hu2+9;) - (hou2+ g;“’ﬂ —0 (14)

where S are the shock speeds. A straightforward calculation from system (13)—(14)

—S[hu—h,u,)+

leads to the Hugoniot curves parameterized as a function in the water depth h.
Starting by changing the reference frame such that

t=u—S=hu=hu—hS=§=q—hS (15)

and

U, =u,—S=h,u,=h,u,—h,S=q,=q,—h,S (16)

o

From Equations (13), (15), and (16) we get
q=q,= hu=h,u, (17)
Plugging Equations (15), (16), and (17) into Equation (14) we get

gh(h+h,)

o7 (18)

a=g,+(h—h,) [Zi

o o

which is associated to the first and the second characteristic fields. Furthermore,
the following holds along the Hugoniot curves

dqg q, g h(h+h,) 2(2h+h,)
) g T Re) | (g p V222 o)
ah - h, T \/g R T Uhmhe) =

o

o

(19)

—>q—O:|: gh,ash—h,
ho

The shock speeds along the Hugoniot curves are given by

4, [gh (h+h,
s_hoi 2( e ) (20)

The shock speeds are required to satisfy the Lax shock inequalities or, in other

words, the entropy conditions [17] such that the following inequality is true
AL a(V) <S(v, V) <Ay a(v,) (21)

Taking into account the Hugoniot curves and the lax entropy condition, the first
shock curve 8, (v,,v) associated to the first characteristic fields and initiated from
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the left-hand state v, consisting of all right-hand states v which may connect to
v, by the Lax shock, is

gh(h+h,)
2h ’

o

h>h (22)

o

81(v): qa=aqi(h,ve) =q,+(h—h,) {Z_

o

Similarly, the second shock curve §,(v,,v) associated to the second characteristic
field, initiated from the left-hand state v, and that may connect to the whole
right hand state v through the Lax shock, is

gh(h+h,)
2h ’

o

h<h (23)

o

52("): QZQ2(h?Vo):qo+(h_ho> {:;1;+

We might also define the backward shocks similarly in view of the Lax inequalities.
The first backward shock curve §7 associated to the first characteristic field,

initiated from the right-hand state v, that may connect to all left-hand state v
through Lax shock, is

gh(h+h,)

5T , h<h

(24)

o

o o

8Z(v): q=q,(h,vy)=q,—(h—h,) {Zo_

Similarly, the second back shock curve 83 (v,,v) associated to the second charac-
teristic field, initiated from the right-hand state v, and that may connect to all
left-hand state v through the Lax shock, is

gh(h+h,)

5% , h>h

(25)

o

§2(v): q=qy(h,vy)=q,+(h—h,) {20_

o

As for the rarefaction waves, the Riemann invariants are used to derive the
mathematical formulas of the rarefaction waves. The rarefaction waves satisfy the
following ordinary differential equations:

(v x

dv T; _x
& ONmnw T T 20

For the family of waves associated to the first characteristic Ay =u—c, we get

dl;(CC) 2 J\f;? (27)

do¢) __2 ({1~ Voh0) o)
d¢ \/%

a:(Q) _, )

¢
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While combining Equations (27) and (28) leads to

dg _a_ ,~
T gh (30)

If we integrate Equation (30), then the integral curve passing through the initial
state v=(h,,q,,%,), is given by

a=n (L 2(van—vim,) (31)

Across the rarefaction fan the characteristic speed should be increased and the
following relation must be satisfied

/\1,2(") > /\1,2("0) (32)

Furthermore, the first rarefaction curve R, (v,) associated to the first characteri-
stic field, initiated from a given left-hand state, and consisting of all right-hand
states v that may connect to the state v through a rarefaction wave, is

(v a=alhovo) =h (1 ~2(VaR-Va,) ). k<, (33)

Similarly, the second rarefaction curve R, (v,) associated to the second characte-
ristic field, initiated from a given left-hand state, and consisting of all right-hand
states v that may connect to the state v through a rarefaction wave, is

(v a=aalhove) =k (2 (Vah-van,) ). hzh, (5

Thus, the backward rarefaction curves can be defined as follows: the first backward
rarefaction curve R (v) associated to the first characteristic field, initiated from
a given right-hand state v, consisting of all left-hand states v that may connect
to the state v, through a rarefaction wave, is

v a=nihvy)=h(E-2(Vai-VaR,) ). hzh, G5

Therefore, the second backward rarefaction curve R2 (v) associated to the second
characteristic field, initiated from a given right-hand state v,, consisting of all
left-hand states v that may connect to the state v, through a rarefaction wave,

) a=aalhove) =n (42 (Vi vam) ), hsh, (39
Finally, by combining the first shock curve and the first rarefaction curve, we
obtain the first locus curve that is associated to the first characteristic field,
referenced by the left locus curve and which is therefore given by 7(v,):=
(hvgl(h)) = 51("0) URI(‘,O) such that

is

QO+(h7ho) |:;]Tzi %}’ h>ho

o

h(%‘;— (\/g*h—\/ﬁ))’ h<h,

Combining the second shock curve and the second rarefaction curve, we obtain

&(h)= (37)

the second locus curve. The locus curve is associated to the second characteristic
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field. It is referenced by the right locus curve and therefore it is given by
7. (v,):i=(h¢&,.(h) =85(v,)UR,(v,) such that

4.+ (h—hy,) {,%Jr %} h<h,
h(%+2(m_ \/gho)>’ hzho

Figure 6 shows the configuration of the loci curves. The solid line portions refer to

(38)

the shock curves and the dot-line portions refer to the rarefaction curves. Taking
into account the wave curves and the given constant initial states v,, we are
analytically and geometrically able to sketch the Riemann solution. Furthermore,
the Riemann solution is discussed in more details in the next Section.

3

0.5

Figure 6. Left and right loci curves

2.4. Classical Riemann problem

In this Section we highlight the classical Riemann problem of the 1D-SWE
and its solution in a single open channel. The bed is considered to be flat. As for
the case of the bottom discontinuity in a single channel, a brief description of the
solution in the spirit of [3] is given. For simplicity in this Section, the standard
Riemann solution is derived for the flat bed case only. The Riemann solution
is given in both analytical expression and geometric configurations. Assuming
a constant bottom elevation in a single channel, the system (3) can be used to
define the standard Riemann problem for a single open channel flow. We consider
the following initial piecewise constant states

—v(0,2) = v, if <0, zeR
Vo= VIR =y if >0 z€R

r

(39)



24 M. A. S. I. Elshobaki

where v; and v, are the left and right initial states, respectively. In the subcritical
conditions, the solution consists of two unperturbed states and an intermediate
state separated by left and right waves [22]. The intermediate state is connected
to the left unperturbed state through a shock wave or a rarefaction wave, and is
connected to the right unperturbed state through a shock wave or a rarefaction
wave. Therefore, the intermediate states are defined by using the Shock curves
and the Riemann integral curves as it is shown in Section 2.3. For a clear picture
of the Riemann solution of system (3)-(39), we start introducing the following
useful Lemmas.
2.4.1. Lemma

Considering the subcritical flow conditions, the only portion of the left
loci curve 7(v;) that intersect with the right critical curve C* is the rarefaction
portion. This intersection denoted by v is characterized by the maximum of &,
and is given by

= (2 F) (10)

=& (hg™) =hy™ [ ghlm (41)
Moreover, 7;(v;) is given by a concave function that is increasing in the interval
]0,hl™] and decreasing in the interval [h!™ +oo[. Therefore, the increasing part of
the function varies from

i 6(h,) =0 to &(him) =iy gt (42)
and the decreasing part varies from
§(RY™)=hi"y/ghlm to lim & (h,)=—00 (43)
h,—+o00

Proof

Starting from the shock portion of the left (first) locus curve 7;(v;) i.e.,
8,(v;) that intersects with the right (the positive) critical curve C* and given the
left constant state v;, then according to the definition of the right critical curve
in Equation (8), the following equalities are true

q; =h;\/gh;, and q, = h,+/gh, (44)

From the shock curve in Equation (22) we have

q gho(ho+h
(hy—Ny) !hll (2hll) s he>hy (45)

Assuming the left shock portion intersects with the right critical curve, therefore
from Equations (44) and (45) we have

q gho(ho+h
/8 =g+ (hy— ) [,jl— (2,””] (16)
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Figure 7. Intersection of loci curves with critical curves at minimum and maximum of loci
functions for constant initial states

This implies that ﬂ — \/gT> 0.
In fact, this is not true since h, > hy implies jt —y/gh, < - — Vh, <0

By contradiction the left shock portion cannot intersect with the right
critical curve.

Starting from the left rarefaction portion of the left locus curve 7;(v;) that
may intersect with the left critical curve C* we get

hor/gh, = h( (Vah,— m)), ho < hy (47)

that is simplified to
\/970=%—2\/9h0+2\/9hl (48)
1

and implies

le 9h, < —\/gh, <0;h,<h, (49)

Indeed, the only admissible mtersectlon between the left locus curve and the
left critical curve is only through the left rarefaction portion curve. To prove
that the intersection point is the maximum of the left locus function, we rewrite
Equation (48) in the following form

Vbl =3 =2y gl 2/l (50)

Arranging Equation (50) somewhat and squaring it, we have

e R T ) (51)
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where hl™ is the first component of the state vi™ and therefore the corresponding
discharge state ¢/™ is given by

go" = hg"\/ghi" (52)

Equations (51) and (52) claim the rightness of Equations (40) and (41). To verify
the concavity and the decreasing-increasing intervals given in Equations (42)
and (43), we start from the left rarefaction Equation (37) and Equations (50)
to obtain

d&;(h
daitho) — Do a3y [ghtm —0 (53)
dhy Ay —pim Ty ho=hlm
The second derivative gives
d?*¢,(h 3
LQ") =——>4 <0, ¥ h,>0 (54)
dh; h,=htm 2/ gh, h, —pim

The increasing and decreasing parts of the concave function are rather claimed as
given in Equations (42) and (43). This ends the proof of Lemma 2.4.1. ]

Thus, for any state v, such that h, < hl™ the flow becomes supercritical

and we have
qU > hO V ghO (55)

The latter statement can be proved as follows. Considering the rarefaction portion
of the first locus curve

q
&(ho) =1L +2v/ghy—2\/gh, (56)
!
From Lemma 2.4.1
1(1q 2 2
hlm e i h
=2 (G4 2o (57)
Combine Equations (56) and (57) we get

6ulh,) =h, (3\/ahi" ~2\/5h,)

h, (3\/gh?—2 ghf)m) , since h, <hlm™
hoyJohtn

hoyJghim, ash, < B

This gives the transcritical flow conditions such that the Froude number Fr > 1

\%

%

\%

gives the supercritical flow condition and Fr=1 gives the critical flow condition.

2.4.2. Lemma

Considering the subcritical flow conditions, the only portion of the right
loci curve 7,(v,) that intersects with the left critical curve C™ is the rarefaction
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portion. This intersection denoted by vi™ is characterized by the minimum of &,

1 2 ?
By == (—"l+3 ghl) (59)

qgm _5 (hrm hrm /ghrm (60)
Moreover, 7,.(v,.) is given by a convex function that is decreasing in the interval
]0,h7™] and increasing in the interval 2™, 4o00[. Therefore, the deceasing part of
the function varies from

hmg( ,)=0 to &.(hlm™)=—hImy/ghrm (61)

h,—0*

and is given by

and the increasing part varies from

& (hD™) = —hI™\/ght™ to hm 5( o) = (62)

Proof

Following the same steps performed as in proof of Lemma 2.4.1 where it is
rather the right instead of the left locus curve that is considered and starting from
the right shock portion of the right locus curve 7,.(h,,v,) and trying to intersect
it with the right critical curve C'~, we get

—ho\/ghy = hy 2 h—h){ W . hy>h, (63)

which implies
Gy \/gh, <0 (64)

and consequently
+\/ < +\/gh <0, sinceh,>h, (65)

This is not p0551ble since the rlght locus is associated with the second charac-
teristic field, which is the opposite of Equation (65). Therefore, the right shock
portion cannot intersect with the left critical curve.

Now, we stay again with the fact that the right rarefaction portion is the
only option to intersect with the left critical curve such that

—hy\/gh,=h, ( (Vgh, —/gh, )) h,<h, (66)
By considering the component h.™, we have
gl = —2\/gh, +2\/ghy (67)
l

and therefore

hrm _77_1_ T , (hrm) hrmW (68)
9 3 Iy
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Applying the first derivative, we confirm that the component A} is the maximum
point of the right locus curve

dg,.(h
NN (69)
dhy 1y —pgm e ho=hrm
The convexity is followed by the second derivative such that
d?¢,.(h 3
£T(2°> = >0, V h,>0 (70)
dhg Ay _prm 28/ghlh, —prm

Moreover, the decreasing and increasing parts of the right locus curve are claimed
through the definition of the left critical curve and the previous findings. The
proof of Lemma 2.4.2 ends here. [

It is worth mentioning that for any states v, such that h, <h.™ we have

4o > ho\/gh, (71)

This implies that the states v, are supercritical states if h, < h)™. The proof of
this statement is as follows.
Considering the rarefaction portion of the second locus curve

£r<h0>:%+2\/gho_2 ghr (72>

From Lemma 2.4.2

1/ 1q. 2 ?
[ . 73
o g( 3. 13 gr> (73)
Combine Equations (72) and (73) we get

& (ho) =—ho (2v/gho—3/gh™)
h, <3W—2 ghgm) , sinceh, <hl™
ho /g

N

Therefore the state v, = (h,,q,) is a supercritical state if Fr >1 and is a critical

state if Fr=1.
Lemma 2.4.1 and Lemma 2.4.2 show that the loci curves 7; and 7, intersect

%

(74)

ALY

at a single point only which gives the intermediate states v, =7, N7, in the
Riemann solution. Therefore, the component (h,,q,) can be computed by solving
the following function, using a nonlinear solver

§(h) =& (h)—¢&.(h)=0 (75)

2.4.3. Treatment of bottom discontinuity

In [3] the stationary step transition (SST) over the bottom discontinuity is
defined. The conservation of mass and energy (Total head) is used to determine
the unknown states of the solution over the step. In [3], an almost ideal step is
considered, such that no energy loss is counted and it is forbidden for the flow to
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change the state over the step, i.e., no change of the flow nature from subcritical
to supercritical and vice versa. This leads to the Riemann solution. The Riemann
solution consists of three states. The first and the third state are computed in
accordance with the previous Lemmas. The second state is computed according
to the SST methodology which is presented in [3], based on the conservation of
the energy and mass. Therefore, the Riemann solution in the presence of the
bottom discontinuities consists of shock or rarefaction waves that are connected
to the unperturbed states. The unperturbed states can be connected through
a contact wave satisfying the SST. Further mathematical investigations [4] have
led to defining the involved waves in the Riemann solution. Starting from the
given state (h,,q,,%,), there are three admissible waves for the system (3): the
rarefaction wave and the shock wave, and the stationary wave with zero velocity.
This has been defined as the contact wave by [3]. The stationary wave is supposed
to satisfy the Rankine-Hugoniot relations associated with the system (3), but
with zero speed. In other words, the mass and the energy are conservative over
the discontinuity of the bottom. Therefore, the shock and rarefaction waves are
something that is defined in the previous Subsection. It remains only to give more
details on the stationary waves. As stated by [4], there are two possible stationary
jumps. This is due to the function that is derived directly from the energy
conservation concept over the bottom discontinuity as shown in the following

_ houo

h
y y (76)
+h+—=z+h,+22
: 2¢ ° 29
System (76) leads to the following one parameter function

®(h):=h3+(Az—h —ﬁ)h2+ﬁ (77)
' ’ 2 29
According to [23], the function ® admits two physical roots corresponding to the
subcritical and supercritical flow states, respectively. This is equivalent to the
possible stationary jumps stated in [4]. The researchers use the convexity of the
function to declare the admissibility condition for the stationary wave. Therefore,
the mass and energy conservation concept over the bottom discontinuity will
ensure the well posed Riemann problem of the SWE in a single channel. In the next
Chapter, we will discover the use of such information to establish the Riemann
solution at junction networks.
For more clarification, numerical examples of the standard Riemann solution
are given in the next Section to justify the previous methodology.

2.5. Numerical examples

Here, we present a numerical example that gives the states of the Riemann
solution in both geometrical and numerical frameworks.
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2.5.1. Example
Consider the Riemann problem (3) together with the following initial
conditions

2 1
0 0

We have h; > h, and ¢, =g,., this Riemann problem analogues to the dam break
problem [14].

Figure 8 shows a geometric picture of the Riemann solution with the initial
conditions given by Equation (78). The Riemann solution consists of two ongoing
waves. The first is a rarefaction wave that connects the unperturbed left state v; to
the perturbed state v,. The second is a shock wave that connects the unperturbed
right state v; to the perturbed state v,. Furthermore, Figure 9 shows the time
evolution of the Riemann solution, where the dashed-lines refer to the initial states
at the zero time which is located at zero in the space domain [—1,1]. It is obvious
that the Riemann solution is given by the solid-lines. Two waves are seen (i.e.,
shock and rarefaction waves).

4

Figure 8. Standard Riemann solution in phase plane of Example 2.5.1

2.6. Summary of Chapter 2

In this Chapter we set up some useful tools that are used in what follows
to establish the overall aim of the paper. Critical curves i.e., right and left,
are shown to distinguish the flow nature. The flow is critical along the critical
curves, i.e. Fr = 1. There are areas where the flow is supercritical above the
right critical curve and below the left critical curve, i.e. Fr > 1. The flow is
subcritical in between the critical curves, i.e. Fr < 1. The loci curves have
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Figure 9. Discharge and water depth profiles of Riemann solution in phase plane of
Example 2.5.1 at time ¢t =0.2s

been introduced to combine the possible wave pattern of the Riemann solution.
The only admissible waves under subcritical flow conditions that can intersect
with the critical curves are the rarefaction waves starting from the maximum
and the minimum of the left locus and the right locus, respectively. These
tools are mathematically proved. Therefore, the standard Riemann solution is
shown in both the analytical expression and the geometrical configuration. The
Riemann solution of the 1D-SWE in a single channel is a self-similar solution
that is composed of two ongoing waves. These ongoing waves are the shock and
rarefaction waves. The entropy condition must be satisfied across the shock wave.
This condition contributes to selecting the right shock wave. A well known fact
about the shock wave is the dissipation of energy. The standard Riemann solution
is geometrically obtained through the intersection between the loci curves. The
states at the intersection are the intermediate states in the Riemann solution.
These states are connected to the unperturbed states through either the shock
wave or the rarefaction wave. For justification, the Riemann solution is also
illustrated by a numerical example. Thus, the Riemann solution is briefly given
for the case with a channel bottom discontinuity. However, deep investigations
about the bottom discontinuity are referenced back to the literature.

3. Junction Riemann problem

3.1. Introduction

In the recent years, mathematical models for network flows constituted by
partial differential equations (PDEs) are well defined (e.g., well posedness, exi-
stence, and uniqueness), see [24—26] for general systems, [27] for applications in
gas dynamics, [28] for applications in traffic flows, and [29] for applications in open
channel networks. These applications can be of great benefit for the mathemati-
cal development. Typical examples of real applications are free surface flows in
irrigation systems or natural rivers [13, 30], traffic flows [28], and blood flows [31].
Particularly, the open channel flow in networks is of great interest from the envi-
ronmental-hydraulic prospective. The simplest configuration of channel networks
is the star network. The star network comprises three identical rectangular chan-
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nels combined together at what is the so-called junction node. The junction node
is an internal node generated by an intersection channels. Realistic conditions
are fundamentally crucial for computational reasons to connect the fluid at the
junction in order to characterize the water flow at the junction node in channel
networks.

We can see from the literature such as [15, 3, 32, 4, 14] that the one-dimen-
sional (1D) shallow water equations (SWE) are well established for simulation of
an open channel flow in a single open channel, where the flow is either subcriti-
cal or supercritical. Thus, the bottom topography is continuous or discontinuous.
However, using the SWE in open channel networks is not an easy task because the
SWE become singular [33] at the junction node. Hereafter, performing 1D nume-
rical simulations in channel networks requires the internal boundary conditions.
Those conditions are defined as functions which depend on the SWE solution to
provide a connection of the channels at each junction node.

In almost half a decade, the 1D-SWE are used for simulations of open chan-
nel networks, see for example [34, 7, 35, 36]. [34] has used a recursive formula
derived from finite elements equations. Relationships in a channel junction are
established to provide the internal boundary conditions. Therefore, a system of
equations is obtained and numerically solved to provide the junction conditions.
Then, the finite element method (FEM) is used to perform numerical simula-
tions. [7] performed simulations of subcritical flows at an open channel junction
using the finite volume method (FVM). Researchers evaluate various existing the-
oretical models. These models are used to provide the internal boundary condi-
tions at the junction. Researchers conclude that all models have almost the same
results for a small Froude number Fr < 0.35. Significant differences between the
junction models are reported for the Froude number Fr > 0.35. The best results
are obtained by the Shabayek model [12]. Tt is classified as a momentum based
model. [35] have investigated the behavior of 1D and 2D simulations of a channel
junction. In both cases the approximated Saint-Venant equations coupled with
the junction model were used to perform the simulations. A second-order FVMw
is used to discretize the equations. The Shabayek model [12] is used to provide
the inner boundary conditions at the junction for the 1D simulation. [35] conc-
lude that the 2D simulations match the experimental data better than the 1D
simulations. This finding was due to the 3D nature of such phenomena (i.e., the
junction flow). It is worth mentioning that the study was limited to the subcritical
flows. Then, [36] obtain the same results for transcritical and supercritical flows.
Furthermore, [36] use the Rice model [37] to supply the junction conditions for
the 1D simulations. However, junction models have been used without any further
mathematical investigations (e.g., existence and uniqueness) of the generated so-
lutions of such models. Even more, such mathematical analysis is hardly achieved
in such a situation due to the empirical nature of these models. To avoid the ill-po-
ssedness of the mathematical model in a junction network of three branches as
mathematically required, six unknowns (i.e., three water depths and three water
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discharges) must be generated at the junction node due to the internal boundary
conditions that ensure the flow continuity at the junction. The mathematical mo-
del is well posed if the internal boundary conditions are well defined. Indeed,
six relationships have to be supplied. These relationships form a system of non-
linear equations. Thus, they have to be numerically solved at each time step to
provide the internal boundary conditions. Furthermore, for subcritical flows one
characteristic field of the SWE is involved at each boundary [7, 36, 38] and there-
fore three relationships are obtained by using the characteristic curves [39]. The
other three relationships are obtained by enforcing the mass, energy, momentum
conservations at the junction node [33, 9, 10, 40, 12].

For the supercritical flow [36, 38], two characteristic fields are involved
at the inflow boundary, and therefore four relationships are obtained. This is
achieved by using the characteristic curves, which is fully explained in [39]. The
remaining relationships are obtained by using the mass continuity [33] node
and the Rice model [37] or the nonlinear dynamical equation with momentum
conservation [41, 42, 6] at the junction.

The junction models are defined based on the previous principles for both
subcritical and supercritical flow conditions. The focus is on the subcritical
flow conditions, meanwhile the classical junction models are represented by the
Equality [9], Gurram [10], Hsu [40], and Shabayek [12] models. Full details about
the classical junction models are given in the next section. It is noticed that
the classical junction models are extensively developed by engineers without
any mathematical analysis that guarantee the existence and uniqueness of the
solutions of models.

Motivated by the mathematical weakness of classical junction models and
based on mathematical analysis, a recent approach to provide the internal boun-
dary conditions is determined by [29]. [29] have proposed to use the Runge-Kutta
discontinuous Galarkian methods to numerically simulate the 1D water flow in
channel networks. The internal boundary conditions are provided by defining an
extended Riemann problem of the SWE at the junction node. This approach is
based on the results obtained by [43] to provide the necessary theoretical findings
that guarantee the well-possedness of the Riemann problem at the junction. [43]
have built their theoretical analysis of the Riemann problem taking into account
the huge amount of literature that was previously developed. Starting from the
well-posed evidence of the hyperbolic systems at the junction network as develo-
ped by [17, 22, 24, 26, 25] and the recent results of the Riemann solution in a single
open channel by [3, 4, 21]: [43] have investigated the existence and uniqueness of
the Riemann solution of the water flow in a star network of three identical rectan-
gular channels. The flow is supposed to be subcritical everywhere. However, the
results are only promising for a specific network being an identical star network.
In reality, nothing is ideal. Therefore, the [43] results open only the door for more
investigation of the Riemann problem in channel networks. Hence, the purpose of
this section is to extend the results by [43] to include an unconditional network
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configuration. In particular, assumptions of symmetry and equality of the channel
width are relaxed. Bottom discontinuities between the channels at the junction
are also taken into account. Since the majority of water flows in nature are clas-
sified to be fluvial (subcritical) flows [44], then, considering only the subcritical
flow condition will not limit the application of the Riemann problem in nature.
Moreover, the Riemann solution is geometrically given by plotting the intersec-
tion points of the loci curves and the junction curves in the phase space. The loci
curves are defined in the previous section. The junction curves have been lately
defined using the methodology presented in this section. The solution is obtained
while physical explanations of each mathematical term are given.

The remaining part of this section is organized as follows: In Section 3.2 we
redefine the Riemann problem that describes the SWE at a junction network. The
Riemann solution is also given in a theorem. The theorem is validated by a vast
set of numerical examples in Section 3.4. Finally, a summary of this section is
included in Section 3.5.

3.2. Nonlinear junction Riemann problem

The Riemann problem is redefined to consider the water flow in a channel
network. Moreover, the Riemann solution is given by the theorem. This theorem
includes the solution of the junction Riemann problem in a non-symmetric channel
network. The bottom is discontinuous. The presented theorem proved in this
section is well suited for both diffluence and confluence networks. However, the
analysis will be only present for the diffluence network where one channel splits
into two channels as shown in Figure 10. The same results are obtainable for the
confluence network by reverse analysis. By considering the channel network shown
in Figure 10, the Riemann problem of the 1D-SWE is written in the following
subsection.

3.2.1. The junction Riemann problem

The junction Riemann problem is given by

™ A(v) P2 =0, z< x;

8V2 2L A(vy) P2 =0, >, (79)
8"3 +A(v3)% =0, z>um,

where x; refers to the junction node and A(v) is the system matrix as defined in
Equation (4). Here, the junction Riemann problem is associated with the following
initial data:

(0,2)=vy, z<uay

vy (0,7) = vy, =>z; (80)
(0,2)=vg,, =>u;

Indeed, the set of Equations (79)—(80) are locally forming the Riemann problem
at the junction node x;. The Riemann solution is expected to consist of six states
denoted by vy;, vg,., U3,., U1,, Vs, and vs,. According to the Riemann solution in



Junction Riemann Problem for Shallow Water Equations in Networks 35

outflow

"7 - outflow

junction node

¥ 4
inflow /

Figure 10. Channel network junction of three non-identical branches

a single channel, we have from the state v;; to the state v,, that the relationship
by Equation (22) or Equation (33) is true. From the state v,, to the state v,
and from the state vg, to the state vg,, the relationship by Equation (23) or
Equation (34) is true. The states v,,, vy, and vs, are connected to each other
through the mass conservation and the total head balance relationships [23]. The
mass conservation and the total head balances at the junction node give

T 1—r
Qe =Walo, T W3Gs.s oo = | — | Q1er Q3= | —— | Q1sr  BbT, (81)
Wa W3
ai a
h — =7,+h ., atx; 82
1T 2gh2. ot hg, + 2912, j (82)
a a
hi,+—5=2Z5+h : bt 83
1*+29hf* 3+ 3*+29h§*’ atx; (83)
where 0 <r =w,2: <1 is the discharge ratio. 0 < wy = b2 and 0 < Wy = b are

. b b
the ratios between the second channel width and the first channel widthl, the

third channel width and the first channel width, respectively. Z, = z, —2; and
Z3 = z3 —z; are the bottom discontinuities between the first and the second
channels, the first and the third channels, respectively. Therefore, for a channel
network of three branches forming a single junction, we are possibly having eight
admissible waves:

1. If hy, <hyy, o, < hg,, and hg, < hs, i.e., the left and right waves are rarefaction
waves, then (vy,,v,,,v4,) satisfies Equations (81)—(83) such that v, € Ry,
Uy, € Ry,., and vs, € Ry,

2. If hy, > hyy, ho, > hy,., and hs, > hs,. i.e., the left and right waves are shock
waves, then (vy,,vy,,vs,) satisfies Equations (81)—(83) such that v, € Sy,
Uy, € 5,,., and vg, € S5,
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3. If hy, <hyy, hy, > hy,., and hg, > hs,. i.e., the left wave is a rarefaction wave and
right waves are shock waves, then (vy,,v,,,v5,) satisfies Equations (81)—(83)
such that vy, € Ry, vy, € 5,,, and v;, €S,

4. If hy, > hyy, hg, < hy,, and hs, < hg, i.e., the left wave is a shock wave
and the right waves are rarefaction waves, then (vy,,vs,,vs,) satisfies Equ-
ations (81)—(83) such that vy, € Sy;, vy, € Ry,., and v, € Rj,..

5. If hy, > hyy, ho, > ho,, and hg, < hs, i.e., the left wave is a shock wave, the first
right wave is a shock wave, and the second right wave is a rarefaction wave,
then (vy,,v4,,v4,) satisfies Equations (81)—(83) such that vy, € Sy;, vy, € Sy,
and v, € Ra,.

6. If hy, > hy;, hy, < hy,, and hg, > hg, i.c., the left wave is a shock wave, the
first right wave is a rarefaction wave, and second right wave is a shock wave,
then (vy,,vs,,vs,) satisfies Equations (81)—(83)) such that v,, € 5y}, vy, € Ry,.,
and vg, € S5,

7. If hy, <hyy, ho, > hy,., and hs, < hg, i.e., the left wave is a rarefaction wave, the
first right wave is a shock wave, and the second right wave is a rarefaction wave,
then (vq,,v,,,vs,) satisfies Equations (81)—(83) such that vy, € Ry;, g, € Sy,
and v, € R,

8. If hy, <hyy, he, <hsy,, and hs, > hs, i.c., the left wave is a rarefaction wave, the
first right wave is a rarefaction wave, and second right wave is a shock wave,
then (vy,,v,,,vs,) satisfies Equations (81)—(83) such that v, € Ry;, vs, € Ry,.,
and v, € S5,

Here, knowing that the admissible shock wave is subject to the fulfillment
of the entropy condition and considering the mass conservation, the total head
balances at the junction node, and the three relationships that generate from
applying the Rankine-Hugoniot or the Riemann invariant in system (79)—(80),
we get the following system of nonlinear equations.

Q14 = WoQa, T W3q3, (84)
2 2

ot %;‘%* = Zy+hy, + 2;2*3* (85)
ai, .

hy, + 2gh2. =Z3+hs, + 2912, (86)

q1. =& (hygvy) (87)

2. = Eor (a3 0g,) (88)

3. = &3 (3,3 03,) (89)

where &;; is given by Equation (37). &, and &, are given by Equation (38).
Therefore, the Riemann solution is equivalent to the solution of the nonlinear
system (84)—(89).

3.3. Existence and uniqueness of the junction Riemann solution

Here, we show that the solution of the junction Riemann problem (79)—(80)
exists under a certain hypothesis and it is unique under subcritical flow conditions.
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Furthermore, we demonstrate also the physical conditions in which the solution
does not exist. Therefore, we are looking to find intermediate state components
(P1ss oy Pasy Q1 Qos, @3, ) that satisfy the nonlinear system (84)—(89).

3.83.1. Mass-energy conservation at the junction

Let us assume that the left subcritical state vy, is known. The states vs,
and vg, are computed by solving the junction conditions (84)—(86). The states
vy, and v, are also expected to be subcritical states with h,, >0 and hg, > 0.
If we substitute the mass continuity Equation (84) into the total head balances
Equations (85) and (86), the junction conditions give two algebraic equations of
third order:

. ) @ r\ &
e b =0 =t 4 glme= (1) §20 00
2
2 177,, q2
B3 fash? 4ca=0,a5=—hy, + 75— DX oo — EIER 91
3. taghz, +c3=0,23 1+ +243 29hf*703 o 29 = (91)

We introduce the specific energy in each cross section at the junction node to
understand the physics of the flow.

E, =h, + ai,
1x 1 2gh3,

2
By =hy+ () 5% (92)
2% 1% wy 2ghg*

2
EB*:hl*_‘_(lir) 4,

w3 29h§*

Thus, the corresponding critical flow depths are

__ 3/43.
hcl -

he= i) () (93)

2
_ 3 (1=r\" 4.
th -
w3 g

Using the first critical depth h,; as the reference depth in the network to scale
other critical depths, we get

2
heo = (i) ’ her

2 (94)
hes=(52) " e
and the critical specific energy in each cross section at the junction node is
Ecl = %hcl )
_3 B
ECZ ) <WLQ) hcl (95)

2
o\ 3
Ec3 = % (10.;37‘) hcl
The critical depth h,, and the critical specific energy E.; are used to correlate
the mathematical formula and the physical meaning. All depths and all specific
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energies are in non-dimensional forms. Therefore, the non-dimensional depths are
written as

= ;%1
ny= 5 (96)
N3 = ;}%

and the non-dimensional specific energies are written to be
Pi=g;
= 2= (97)
Ty=g2%

Thus, the fundamental relation between the non-dimensional specific energy and
the non-dimensional depth at each channel as explained in details in [23] for
a single channel, are

2
o=3m+3(2) & (98)
2

For more clarification about the physical meaning of the previous dimensionless
quantities, the relationships by Equation (98) are justified in Figure 11 for a set
of parameters r =0.7, wy = 0.2, and w; = 0.8. The solid-curve shows the relation
between the energy and the depth for the first channel. This curve is divided
into two parts by the dotted unity slope line, the upper part is according to the
subcritical flow and the lower part is according to the supercritical flow. Similarly,
the dashed and dotted curves are the second channel and third channel curves,
respectively. Note that the areas between the curves and the axis are physically
not possible and therefore there are no flow states belonging to these areas. Very
important parameters are the discharge ratio » and the contraction ratio w that
they control the relationships shown in Figure 11. The influence of r and w into
the solutions is highlighted here rather in such a way that the variables  and T"
are investigated by considering the following domains:

r
1<n <oo, ()
Wy

1<T <oo, <T>
Wy

Since the study is limited to the subcritical flow, then the choking of the flow
and the critical transition are excluded. In other words, the specific energy in any
cross-section in the network is necessary larger than the critical value.

This condition is important to pass over the junction without transition

@l
Wl

1—
<1y < 00, ( T) <1y <00 (99)

w3

Wl
Wl

1_
<T, < oo, ( T) <Ty <00 (100)
W3

from the subcritical to supercritical flow. Using the dimensionless quantities by
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Figure 11. Energy vs depth

Equations (96)—(98), Equations (90) and (91) are rewritten in the following
non-dimensional forms

3 17\
773‘*'@277%"‘/12:0792:_*F1+A22,N2:* — (101)
2 2 \wy
3 1(1 ’
—r
U§’+®3U§+#307932F1+AZ37H32< ) (102)
w3
AZ, = hZ—QI and AZ; = hZ—i are the non-dimensional bottom discontinuities terms.
Equations (101)—(102) are third degree polynomial generalized in the following
form
P =n*+On*+p; n=(n,m3) ©=(02,03), n=I(uzps) (103)

Taking into account the proper domains of r» and w that ensure the fulfillment of
the subcritical conditions, this always implies p to be positive. For the forward
facing step bottom the maximum permitted step height is simply equal to the
difference between the upstream specific energy and the critical downstream
specific energy as shown in [16], that gives:

2 2
2 52 1—r\"’
SAZ,<T, - (”) . 3AZy<D - ( r) (104)

Wa ]

Tt is worth mentioning that Equation (104) and the restriction on the subcritical
conditions imply © < 0. > 0 follows from the constrains on the discharge ratio r
and the width ratio w. By applying Cardano’s method to compute the roots of the
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cubic equation which is explained in detail by [45], the roots of Equation (103)
depend on the following relationships (discriminants):

4
Ay = iy (27@%"’#2) (105)

4
Ay =pu3 (2793"'#3) (106)
The polynomial roots are complex roots if A >0, they are multiple roots if A =0,
and they are real roots if A <0.

Considering the definitions of © and ;1 parameters in Equations (101)—(102),
and the subcritical conditions, the following equations are true

4 1 2 A 1/ r)?
C O3ty =—— ([T, —ZAZ (L) =23 (Z) <o (o7
g7 2t 2( 173 2) +2<w2> 2 2+2<w2> <0 (o)

3 2 2
%@g+u3 :—% <F1—§A23> +% (1%:) :—%rg% (1%7") <0 (108)
in the physical domain of I'y, Ty, and T'y as given in Equation (100). Furthermore,
>0 and Equations (107)—(108) lead to A <0 and therefore the polynomial
shown by Equation (103) has three real roots. Equation (104) is equivalent to the
inequalities A, <0 and A4 < 0. Indeed, the restriction on the discriminants (A)
is related to the step height that it is compared to the specific energy values.
For a given set of initial states and parameters (I'y, AZ,, AZ,), the
admissible ranges of sz and of %;” are determined as follows

3 3
r 2 B 1—r 2 B
— | <| T, —=A <(T'y—=A 1
(%)(1 3 ZQ) | <w3)<1 3 Z3> (109)

The discharge ratio r and the width ratio (¢.e., contraction ratio) w must fulfill the
condition given in Equation (109) for a certain range of 7, and AZ. Equation (109)
can be read as the maximum contraction degree of the channel width that is

compatible with the subcritical flow conditions across the junction. Moreover,
considering the following expressions

2
270, r\? 1 270, 1—r\ 1
1= —_1+2(> —“1-—==-1+2 (110)

/J/2 Wo F% ’ 2/_113 W3 Fg

and using the physical domains defined in Equation (100), we obtain

270 270
—1<—1-—=<1, 0<9=arccos(—l—3> < (111)
2u 21
Thus, taking into account A <0 and the inequalities shown by Equation (111),
applying Cardano’s method and trigonometry properties, the polynomial shown

by Equation (103) admits three real roots. The first root is

D = (;Fl—;AZ> [1—2005 <gﬂ (112)



Junction Riemann Problem for Shallow Water Equations in Networks 41

From Equations (100) and (111), ") is determined to be real and negative and
therefore it is excluded because the water depth is negative (water depth must be
greater than zero). The second root is

1 1 2r—0
=D, —= — S22
7 <2F1 3AZ> {1 2c05( 3 >} (113)

Similarly, from Equations (100) and (111), 7?) is determined to be positive and
2/3 2/3
less than (w%) for the second channel and less than (%) for the third

channel. Therefore, the root 7?) is said to be the supercritical solution. This
solution is excluded because it is beyond the scope of the thesis. Finally, the third

root is 0
1 1 27+
B=(=1r,—ZA 1-2 —_— 114
7 <2 173 Z) [ cos 3 (114)

In the same way, n® is determined to be real and positive from Equations (100)

2/3
and (111). Tt is greater than (L) for the second channel and greater than

Wa

2/3
lw;;) for the third channel. Therefore, the root n®) is the subcritical solution.

The following lemma summarizes the results in terms of dimensional varia-
bles such that Y =73 h_, and n® = (1,,13)
3.3.2. Lemma

For a given left state v, such that the subcritical flow condition is fulfilled,
there will be only two right states v,, and v,, that satisfy the junction conditions
given in Equations (81)—(83). Therefore, the right states are determined as follows

Y(ag,cy) 40
a i
= | () | ne) == [1o2eos (P02 )| )
<2
Y (ag,c3) 940
a T
U3s = (%)q“ ;Y(a37c3):—33 {1_2005 <33>} (116)
<3
where
2 2 2
q * T q % 27C
A :—h1*+Z2—ﬁ,cgz <w2> i,%:arccos (—1— 203 ) (117)
2 1 2 27
1« LA B C
a3:—h1*+Z3—?;ﬁ*,c3: ( - ) 219793:arccos (—1— 2a§3> (118)

The discharge ratio r and the width ratio w satisfy Equations (81) and (109).

3.8.8. Junction curves

We consider the loci curves defined in Section 2.3 and the mass-energy
conservation at the junction in Subsection 3.3.1.
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We take the states vy, € 7y;(h1p, Vi) Vap € Top(BopsVy,), and vg, €
T3-(R3,;Vs,.). Then, the physically admissible states for any value of h,, are the
state pair (hgy,qqs) and (hss,qss). These states satisfy the subcritical flow con-
ditions. They connect to the state v;, by the mass-energy conservation at the
junction. The state pair (hyy,¢o.) and (hg.,qs. ) satisfy the following equations

how =Y (ag(hy,),co(h1,))s  Gop = a%gll(hlovvll) (119)
(1—7)
hg = Y(az(hi,),c3(hip)), g3 = TBSU(hlovVu) (120)

where Y'(.,.) is given by Equations (115) and (116) such that

£2<hloav1l) r 252(h1o’vu)
az(hlo):—h10+Z2—”25T7 ca(hy,) = o ”T (121)

2
52 (h’ oV ) (177,) 52 (h’ oV )
aS(hlo):7h10+237Wa C2<h’10>: W ! %g ! (122>

&(hyysvyy) is given in Equations (37) and (38). Hence, the junction curves
denoted by Jy(hq,,vy;) and J5(hq,,vq;) are defined as follows

h h
Jo(hygvyy) = {qzﬂ o Jy(hygvy) = [q?’b} (123)

2> 3>

Jo, (h1mV11)

Figure 12. Two branches of single junction curve

The two generated branches of each single junction curve are geometrically
described by Figure 12. The curves shown in green-thick lines are the discharge
and depth components of the junction curve. The upper one refers to the depth
components given by Equations (119)—(120). The lower green curve shows the
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discharge components given by Equations (119)—(120). The minimum and the
maximum values of the upper and lower green curves are qé@ and hlgg, respectively.
The intervals ]0,h5"] and ]0,¢4™] are due to the supercritical flow conditions and
therefore they are combined together to plot the first junction branch Jy, (vy;).
The intervals |h5™, +00] and ]gh™,+o00] are due to the subcritical flow conditions
which are mostly combined together to give the second junction branch J,_(vy;).
Both junction branches are shown in thick-red lines. Here and after, the only
admissible junction branch which fulfills the subcritical flow conditions is the
branch J, (vy;). We globally refer to this branch as the junction curve for
simplicity. Note that the branches of the second junction curve J,(vy;) are defined
in the same way. These results are matching the physical meaning showing in
Figure 11.

Indeed, the intermediate states in the solution of the junction Riemann
problem are determined when the junction curve J,_ intersects with the locus
curve T,,.. The junction curve J;_ intersects with the locus curve 73, and the
corresponding states on the locus curve 7p;. In the next Lemmas, we investigate
the extrema of the junction functions Y (a(hq,,c(hq,)).

3.3.4. Lemma
Consider the functions Y (a(hy,),c(hq,)) defined by Equations (115)—(116),
the minima of such functions are determined at the maximum states (hi™ ¢i™)

given by Lemma 2.4.1, such that the following holds

dY (ag(hy,),co(hi,)) =0
Iy =him =

o 124)
d?Y (ay(hq,),co(hq, (
( 2<d;zaf)o 2(hy,)) |h10:hll’:' >0
dY (ag(hi,),c3(h1,)) _
" o =0 (125)

d2y(33(h10)7c3(h10))
T =i >0

Moreover, the functions Y (a(hy,,c(h;,)) are decreasing in ]0,h["] and increasing
in [RY™ oo[. The decreasing part of the functions varies from

lo>
9
lim Y(aQ(hlo)vcz(hlo»:*hlf(?_Z2 to YQIT (126)
hqi,—0%" 2
9
lim Y (ag(hy,),cs(h,)) = Shin —Zy to Y4 (127)
hq,—0* 2
while, the increasing part varies from
Vi to lim Y(ag(hy,),ca(hy,)) = +oo (128)
hy,—0"
Vim0 Tim Y ag(hy,)sc(hy,)) = +oo (129)
hy,—0F

with

o (Wm oz 0, + 2
vl ( ; 32) |:12COS( 23 )} (130)
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lm
yim — (%o?) [12(108(93;27)] (131)
2 lm 3
r h
= —14+2( — —lo 132
% arccos( - <w2> (hlﬁ?—ﬁﬁzg)) (132)
1 i hi ’
—T
0, =arccos | —1+2 Lo (133)
3 ( ( (,us ) (hll’rg'—gAZ?)) )

The proof of Lemma 3.3.4 is as follows.

Proof
The functions Y (a(hy,),c(hy,)), and &(h;,) are smooth functions and
therefore their derivatives exist. Denote

such that

27¢(hy,)
U(hy,)=—1——7—7% 134
( 10) 2a3(h10) ( )
Then, the derivatives of Y (a(hy,),c(h;,)) with respect to the depth component
h,, give
Y 1 1 2
d (a/(hlo)7c(hlo)) _ 7a/(h10) 2cos *&I’CCOS(\IJ(hlo)>+I -1
dhy, 3 3 3 (135)
2a(hy)V (hy,) . (1 27T>
————=22— 9% gin| —arccos(V(hy,))+—
5 s gerecos(¥h,) + 5
By Equation (134), the derivatives of W(h,,) with respect to hy, give
7 727cl(h10) 810/(h10)0<h10) (136)
2a%(hy,) 2a*(hy,)
such that
, §uh,) | &)
hy,)=—1— = 20 137
o) g%, " ghi, 7
’ R gz{l(hlc)gil(hlo)
= —_——— ]_
() = o Lz (138)

where, R is equal to r or 1—r according to the order of the channels. From
Equations (40)—(41) in Lemma 2.4.1, the derivative of the discharge component
¢1,(hy,) when hy, tends to h!™, gives

E(RT) =05 & (R =i/ ghi (139)
Thus l
"(hY™) =0
a ( 10) (140)
(R =0

and therefore

U/ (plm) =0 (141)
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Inserting Equations (140)—(141) inside Equation (135) gives

dY (a(hy,),c(hi,))
dhy,
Equation (142) proves the minimum of the functions Y (a(h,,),c(h,)) at the
depth h{". As for the second derivatives that show the convexity of the function,
we rewrite the first derivatives of functions Y (a(h,,),c(h;,)) for simplicity as
follows

PO eMo)) 211, () 2l ) () ) r,) (143

gyt =0 (142)

dhy, -3
such that,
1 27
®, (hy,) =2cos <3arccos(\11(h10)) 3 ) -1 (144)
1
by (hy,) = —F/——— 145
2( 10) 1—\112(h10) ( )
(1 27
O, (hy,) =sin (3 arccos(W(h,,))+ 3 ) (146)

The second derivatives of Y (a(hy,),c(hy,)) give

e al) 20y, 1) 1y, 840,

2 /7 ’ "
— 5 B2(1o) @5 () [0/ ()W () (g )97 (hy,)] - (147)
2 / / ’
- §a(hlo)"1’ (h1o) [®5(h1,) P5(ho) +Po(hy,) 5 (Ry,)]
where from Equation (136) the second derivative of ¥ is
27¢”  8la”c  135d’c’ 162(a’)?c
2a? 2a* 2a* a®
such that ¢’ and ¢’ are given by Equations (137) and (138), respectively. The
second derivatives of @’ and ¢’ are

U= (148)

s 1 _51/1511_(511)2 Eudu fu

: ‘gl i, n, o, h41 e
1 /(R

o= (B) @ com (150)

where, &}, and £, are given by Equations (53) and (54), respectively. The
remaining derivatives are

2 W 1 2
Q) =— 3Wbln< arccos(\I/)—F;)
) v
1 \I’/ 1 2
o = 300 cos <3arccos(\lf)+;>
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Since &j;(R™) =0, aj,(hi™) =0, ¢};(h{™) =0, and ¥/(h{") =0, then Equ-
ation (147) evaluated at h{™

lo»

is simplified to
d*Y (a(hy,),c(hy,))

2 |h0 =hlm =
) dhi, , s (152)
30" (W) (M) — 5 @2 (A7) @5 (R )a (R W (A1)
From Equations (41), (54), and (121)—(122) we have

Im Im Im ” Im 39

§ulhig) =hig\/ghiy, 1l(h10):*71 (153)
24/ ghiy

3 1(R\®

olnig) =~z 2. clniz) =3 () (hipy? (154)

By inserting Equation (154) into Equation (134), we obtain

3
R 2 hlm
q;(hlrg)_12(> — o (155)
' w) \~hiz+37

then it follows from Equations (144)—(146) that

®, (him) =2cos (;arccos(\ll(hll?))JrQ;) -1 (156)
1

0y (M) = ———— (157)

1= w2(hly)
m : 1 Ilm 2
D, (hi™) =sin garccos(\ll(hlo ))Jr? (158)
and
v im 31

a (hlm)z—gﬁ (159)

Simple calculation implies directly that Equation (147) satisfies the following

d2Y(a<hlo>7c(hlo))
dhi,

[y, —him >0 (160)

Finally, we end the proof of Lemma 3.3.4 by considering Equations (115), (116),
(121), (122), and the rarefaction portion of the left locus curve. We have

. . 9 im
plim Y(a(hy,),e(hp)) == lim a(hy,)=3hig—2 (161)
lim Y(a(hy,),c(hy,)) =400 (162)
hy,—0"



Junction Riemann Problem for Shallow Water Equations in Networks 47

3.3.5. Lemma

The junction curves Jy(hy,,vy;)-J5(hy,,Vy;) consist of two branches con-
nected by the minimum states. They are denoted by VZQ"; and vg’;ﬂ respectively.
These states correspond to v{™ by the junction conditions with

nr=viz = () ety
B N L
where Y™™ and YJ™ are given by Proposition 3.3.4. ¢{

For any state (hqgy,gss) on the junction curve Jy(hq,,vq;) and (hg.,qs.) on the
junction curve Js(hq,,vy;), we have

h2> Z Yll;n (164)
has 2 Y35

(163)

is given by Lemma 2.4.1.

Furthermore, the following inequalities are true.

Do <, Yo 5 §f0<hy, <hi?
1o lo (165)
T <0, G50, 0<hy, <hlD
dh d .
s =00 G, =0, iy =R 166
dhy, _ 0 daa. if h, = hlm ( )
dh,, — dh,, — 1 lo = ""lo
>0, G <0, A <hy, <+oo .
° ° 167
dh d .
>0, g <0, A <hy, <oo

The proof of Lemma 3.3.5 is as follows.

Proof

In general, we provide the proof steps for both junction curves. Consider the
state vi™ connected to v{™ through the mass-energy conditions at the junction.
Equation (163) follows by considering Equations (119)—(120) and Lemmas 2.4.1
and 3.3.4. As long as h™ is the minimum of the function Y (a(hy,),c(hy,)) shown
by Lemma 3.3.4, we get

v =Y(a(hy,),c(hy,)) 2 Yo" (168)
The proof ends by using Lemmas 2.4.1 and 3.3.4, whilst Equations (165)—(167)
hold. ]

Lemmas 3.3.4 and 3.3.5 illustrate that each junction curve has two branches.
Positive branches are due to non-subcritical states, such that Equations (165)
and (166) are satisfied. Such branches denote Jy, (h,,vy;) and Js, (hi,,vy;)
for the first and second junction curves, respectively. Therefore, J,, (hq,,vy;)
and Js, (hy,,vy;) branches are excluded because subcritical flow conditions are
violated. Negative branches of the junction curves denote J, (hy,,vq;) and
J5_(h1,,Vy). They satisfy Equations (166)—(167). These branches fulfill the
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subcritical flow conditions. Indeed, the intermediate states in the solution of
the junction Riemann problem are obtained such that the junction branches
Jy_ and J;_ intersect with the right locus curves 7y,.(hy,,Vs,.) and 75,.(hq,,Vs,.),
respectively.

Furthermore, Lemmas 2.4.1, 2.4.2, 3.3.2, 3.3.4, and 3.3.5 are necessary to
construct the Riemann solution. The solution is summarized in the following
theorem.

3.8.6. Junction Riemann theorem
The Riemann Problem defined in (79)-(83) has a unique solution if and
only if
{ Q%gl > §2r(h§27£>"2r> (169)
qg; > 637’<h’3n>17v3r)
where the state pair (h57,¢i™) and (R4, ¢i™) are given by Lemma 3.3.5, and the
locus functions &,, and &, are given by Equation (38), such that the condition
is satisfied by Equation (104). Therefore, the intermediate states of the junction
Riemann solution are determined by

hl* th
Vi = | ¢ | = | &ulhis,vay) (170)
21 21
hy, Y(ag(hys),co(hyy))
Vo = | Gou | = | & (Y(ag(hyp),c2(hys)), va,) (171)
D) &)
hg, Y(ag(hm),czz(hm))
Vi = | Q34 f?,r(Y(l)(33(h1>)ac3(h1>))avgr) (172)
Z3 Z3
where the depth component A, is the solution of the following equation
§(hys,v) =6, (Y(az(hlp)v% (h1>))v"27~) +&3, (Y(a3 (h1>)vC3<h1>>)vV3r) -
(173)

(c; + 1w3T> E1(hip, V) hyp > BT
where, the depth component h{™ is the maximum depth value of the left locus
curve given by Equation (40).

Proof

Here, we deduce the proof of the theorem 3.3.6 as follows:

The valid junction branches that determine the subcritical states are J;_
and J,_ such that Equations (169) and (104) are true. The mass conservation
at the junction as well as the subcritical flow condition must be satisfied.
Geometrically, the discharge components ql;g and qf{; must be also located above
the right locus curves 7,, and 73,, respectively. Indeed, from Lemma 2.4.1 and
Lemma 3.3.5 the junction curves J,_ and J;_ intersect with the locus curves 7,
and 73, at unique points. These points give the intermediate states v,, and v, of
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the Riemann solution. Furthermore, the intermediate states satisfy the subcritical
condition and the mass conservation such that the following relationships are
obtained

By = Y (ag(hye ) oo (i) Eop(hervay) = (w) fulhov)  (74)

1—
hS*:Y(aB(h1>)7C3<h1l>)); €3r(h3*7v37’): ( w .

) Bri(hipsvy) (175)

3

hyp > hlﬂ} belongs to the junction curve for any depth component and combining
Equations (174)—(175) together, we obtain

o (Y(ag(hyp)sca (), Va,) +63, (Y(ag(hys)sca(hy)), va,) —

r 1l—r (176)
<+ o ) &u(hye,vyy) =0,y > hiT

Wo 3

Therefore, the depth component h;_ is determined by finding the root of the
following function

§(h1>7v) = 527" (Y(aQ(h1>>7C2 (h1>)>7v27“) +£3r (Y(a3(h1>>7c3(h1>))7v3r) -

T 1—r
(u12+ s )§1l(h1>avu)vh1>>hlﬂl

(177)

Furthermore, the intermediate state v, in the Riemann solution is determined
by

h’l* hll>
V= | @ | = | §ulhys,vey) (178)
21 21

In fact the junction curves J,_, J,_ and the locus curves 7, 74, intersect

™

if and only if the states vi? and vi" are located above the locus curves

Ty, and Ty, respectively. If the state vi" € 7, and the state Vi € 5., the
Riemann intermediate states are determined through non-valid states due to
Lemma 2.4.1. Lemma 2.4.1 shows that v/ is a critical state. Hence, the conditions
in Equations (169)—(104) must be satisfied to have the subcritical solution.
Finally, the proof ends here while the same results can be obtained if we start
from any given right state to deduce the left states in case of a network of two
ingoing branches and one outgoing branch. Therefore, it is important to stress
that the theorem is valid for both confluence and difluence networks. Also, the
theorem can be applied to a large network of IV number of branches. ]

3.4. Numerical examples

In this part, we numerically investigate the theoretical findings of the Rie-
mann solution in channel networks. A vast set of examples with different initial
conditions are considered to clarify the necessary conditions for the solution to
be existing or not, either unique or not. Furthermore, the numerical results are



50 M. A. S. I. Elshobaki

given for the Riemann solution in a simple channel network of three non-identi-
cal branches (one ingoing channel and two outgoing channels). All the solution
components (i.e., depths and discharges) are plotted in the phase plane h—g.
In addition to that, the depth and the discharge components are also given in
the phase planes h—x and ¢—x after a certain time. To be more organized,
we present the numerical results for both symmetric and non-symmetric channel
network. Width contractions w and bottom discontinuities z are considered for
the non-symmetric network only as a state of the art in the current framework.
However, the examples are limited to a simple network for simplicity of presen-
tation. In all examples, the discharge ratio r is determined through the nonlinear
system (84)—(89). The system is numerically solved by using the hybrid method
as explained in [46] that is based on the Newton iteration procedure. Thus, the
contraction ratio w is priorly defined. This implies that r is only determined if
the system (84)—(89) admits a solution. The computed value of r is considered.
If the system (84)—(89) admits no solution, the discharge ratio r is chosen for
clarification.

3.4.1. Example
Consider the initial Riemann states

1.5 1.7 1.7
v =110, v,.=]08|, vy, =038 (179)
0 0 0

for the symmetric channel network with a downstream flow characterized by equal
width and equal discharge (i.e., by =by =bg =1m, 2z, =25 = 23 =0, and ¢, =¢3),
where the discharge ratio » =0.5 by the symmetry of the downstream flow.

Figure 13. ¢—h phase plane for symmetric channel network without bottom discontinuities
for given initial states by Example 3.4.1
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Figure 14. Water depth h and flow discharge g profiles evolve at t =0.2s for a symmetric
channel network without bottom discontinuities for given initial states by Example 3.4.1

Figure 13 shows the Riemann solution for a symmetric flow in a star
channel network of equal width and length with a continuous bottom. The
intermediate states are given v, vo,, and v;3,. We notice that the states v,, and
v, are coincided due to the symmetry of the downstream flow. It is noticed that
the intermediate states v,, =v;, are computed through the intersection of the
junction curves J_ (dashed line) and the right locus curves 7y,-75, (dotted-solid
lines). Whilst, the state v,, is the corresponding state on the left locus curve 7y;.
Hence, the Riemann solution is demonstrated by the outgoing left shock (solid
line) that connects the unperturbed initial state v,; and the intermediate state v,
(perturbed state) for the inflow channel (first channel). The unperturbed initial
states v,, = va,. are likely connected to the perturbed states v,, = v4, through the
outgoing right rarefaction (dotted lines) for the outflow channels (second and third
channel). Here, the condition given by Equation (169) is fulfilled. In Figure 14,
we demonstrate the time evolution of the depth and discharge profiles after the
time elapse t = 0.2s in the space domain [—1,1]. The Riemann solution is shown in
the solid lines. The dashed lines represent the initial data profiles. The perturbed
states satisfy the mass-energy conservation at the junction. The Riemann solution
consists of the left outgoing shock occurring at the inflow channel where z <0
and the outgoing rarefaction occurring in the outflow channels such that x > 0.
In the next examples, we justify theorem 3.3.6 by demonstrating the effect of
the backward bottom discontinuities and the width contraction in the Riemann

solution.
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3.4.2. Example

Consider the following initial states with small backward bottom disconti-
nuities z; > (2z4,25) and the computed r = 0.76. The channels width are chosen
such that b; =1m, b, =0.9m, and b =0.5m.

1.2 1.3 1.8
vy=| 131, vy =[04], v5, =035 (180)
0.15 0 0

Figure 15 shows the Riemann solution in a non-symmetric channel network
with small backward bottom discontinuities. The junction curves are shown
in dashed lines. They intersect with the locus curves (dotted-solid lines). The
perturbed states are shown by v,,, vo,, and vs,. vy, vy, and v3, are connected

Figure 15. The Riemann solution with small backward bottom discontinuities (e.g.,
2, =0.15m, 2z, =25 =0) and with the computed r=0.7 for given initial states by
Example 3.4.2

to the unperturbed initial states vy;, vy,, and vs, through the outgoing left
shock (solid-line) for the inflow channel, the outgoing right shock (solid-line) for
the second channel, and the right rarefaction (solid-line) for the third channel,
respectively. Here, the Riemann solution exists and is unique since Equation (169)
is fulfilled. r and w satisfy Equation (104). Towards better understanding of the
Riemann solution, Figure 16 shows the time evolution of the depth and discharge
profiles after the time elapse ¢t =0.2s. The Riemann solution is shown by the solid
lines. The initial states are in the dashed lines. Two kinds of waves are noticed,
the shock wave occurs in the first channel for x <0 and in the second channel for
x> 0. The rarefaction wave occurs in the third channel for = > 0.
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Figure 16. Water depth h and flow discharge ¢ profiles evolve at t =0.2s for symmetric
channel network with bottom discontinuities (e.g., z; =0.15m, 2z, = z; =0) for given initial
states by Example 3.4.2

3.4.3. Example
Consider the following initial states with large backward bottom disconti-

nuities and discharge ratio » =0.7. The channels widths are b; =1m, b, =0.9m,
and b; =0.5m.

1.2 1.3 1.8
Vll = 1.3 5 V2,r = 0.4 5 Vs,r = 0.35 (181)
1.0 0.0 0.0

Figure 17 shows that the Riemann solution does not exist while the
condition by Equation (169) is violated and there is no intersection between
the junction curves and the right wave curves. This situation is analogue to the
cascade of water falling from height [47]. It is formed when the river steam flows
over a steep incline, and therefore there is no physical connection between the left
and right states. Thus, the flow is highly accelerated. Here, the backward bottom
step minimizes the region of the Riemann solution existence.

In the following examples, we demonstrate the effect of the forward bottom
discontinuities on the Riemann solution.

3.4.4. FExample

Consider the following initial states with small forward bottom discontinu-
ities (zq,25) > 2z; such that the computed discharge ratio  =0.7. The channels
widths are b; =1m, b, =0.9m, and b3 =0.5m.

1.2 1.3 1.8
vi= 13|, vy =104, v5 =035 (182)

0.0 0.15 0.15
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Figure 17. Non-existing Riemann solution with large backward bottom discontinuous (e.g.,
21 =1.0m, z, =24 =0) and r=0.7 for initial states given in Example 3.4.3

Figure 18. Riemann solution states with small forward bottom discontinuities (e.g., z; =0.0,
25 =23 =0.15m) and computed r = 0.7, initial states are given in Example 3.4.4

In Figure 18, we demonstrate that the Riemann solution exists under small
forward bottom discontinuities supported by the fulfillment of the conditions given
by Equations (104)—(169). It is also clear that the Riemann solution consists
of the left outgoing shock, connecting the left unperturbed state and the first
perturbed state in the inflow channel. Two right outgoing rarefactions connect the
right unperturbed states and the second and third perturbed states. Furthermore,
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Figure 19. Depth and discharge profiles evolution of Riemann solution in non-symmetric
channel network with small forward bottom discontinuities (e.g., z; =0.0, 2z = 23 =0.15m)
after time elapsed t =0.2s

Figure 19 illustrates that the depth and the discharge profiles evolve after the time
elapse ¢t =0.2s. The structure of the solution is more clear in the finite domain x.

3.4.5. FExample
Consider the following unperturbed initial states with large forward bottom

discontinuities such that the discharge ratio = 0.7. The channels widths are
b, =1m, b, =0.9m, and b; =0.5m.

1.2 1.3 1.8
vy=|13], vy =[04], v5 =035 (183)
0.0 0.4 0.4

Figure 20 shows that there is no solution under the large forward bottom
discontinuities such that the discriminants given by Equations (107)-(108) are
violated. This leads to the supercritical flow states as well as the condition in
Equation (104) fails. This is because the energy is not enough to allow the flow
passing the bottom step. Even more, the transcritical flow is expected because
of the forward bottom discontinuities. In other words, the flow is choked [16].
Finally, the examples justify theorem 3.3.6.

3.5. Summary and conclusion

In this section we study the well-posed Riemann problem in open channel
networks. Based on mathematical analysis (e.g. existence and uniqueness) and
physical interpretation, we provide the necessary conditions to plot the Riemann
solution. The solution is present assuming a non-special hypothesis (geometric
configurations or symmetric flow). The subcritical flow condition is supposed
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Ay =0.007247

3| Ay =0.00136
C+

Figure 20. Non-existing Riemann solution present with large forward bottom discontinuities
(e.g., 21 =0.0, z5 =23 =0.4m) and r=0.7, for given initial states in Example 3.4.5

to preserve the hyperbolicity of the PDE system. The analysis is challenged
by the presence of bottom discontinuities and the channel width contraction at
the junction. Taking into account the mass and the total head at the junction,
we investigate the domain of existence of the Riemann solution. There are
relationships involving the bottom discontinuities, the width contraction ratio,
and the discharge ratio. Furthermore, the relationships between the physical
quantities across the rarefaction and the shock waves complete the analysis of
the domain of existence. Each stage of the solution is highlighted in association
to the physical meaning. We conclude the results in the theorem. This theorem
shows that the Riemann solution in a channel network junction is guaranteed
by the energy and mass conservation conditions under suitable initial conditions.
The solution does not exist if the subcritical flow condition is violated. Where
the supercritical flow is not treated. The greatest advantage of this theorem is the
possibility to apply the Riemann solution to provide the inner boundary conditions
for 1D simulations in open channel networks (confluence and diffluence with the N
number of branches). A vast set of examples are numerically performed to clarify
the theorem. The examples start by the symmetric case that has been investigated
in [43] and end by the non-symmetric case that is extended in this section.
The effects of the channel width contraction, the discharge ratio, and bottom
discontinuities on the Riemann solution are demonstrated under the conditions
in the theorem 3.3.6. In some examples there are no solutions due to the breach
of the necessary condition in Equation (169) or because of the violation of the
subcritical flow conditions in Equations (105)—(106). Coping with such limitations
can be considered as the subject matter of future work. In the next section we
validate the Riemann solution against other models to have a full insight into the
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theorem applications. This will allow us to have a consistent model and discover
how convenient the Riemann solution for real applications is.

4. Applications of Riemann problem in channel networks

4.1. Introduction

Channel networks are found in natural river basins, irrigation and drainage
canals, and urban water treatment plants. In addition to the complexity of the flow
in a single channel, a network junction node poses more complexity to understand
the network flows. In particular, the junction flow is fundamentally important in
hydraulic engineering as well as in computational fluid dynamics.

Due to a large scale of natural networks, the use of 2D or 3D simulations
seems to be numerically expensive with excessive operating time costs. Therefore,
the 1D simulation is probably still the best choice to understand the network
flows. It is mainly the 1D-SWE that are used to describe natural flows [15] as
the water depth is small enough compared to the horizontal length scale in rivers
and channels. The 1D-SWE are the simplest model to study the natural flow in
networks. However, there are mathematical difficulties appearing challengeable
to solve the 1D-SWE system in a junction network. Indeed, special attention at
the junction is necessary to avoid falsifying the numerical scheme. There are two
methods to tackle such difficulties in the literature. The first method has been
extensively used by engineers based on some conditions. These conditions meet
the flow physics [8, 48, 9, 37, 49, 10, 11, 40, 12]. The second method was provided
by mathematicians based on the harmony between mathematical theories and
the flow physics. The hyperbolic theory is applied in parallel to the conservation
laws [17, 19, 22, 24, 4, 26, 25, 43].

[8] carried out an experiment to study the increased water level at the
junction. In this study, the channels are of equal widths and zero slopes. Additional
assumptions are added. The friction forces are negligible. The hydrostatic pressure
distributions are assumed. The water levels upstream of the junction are equal.
The velocities are uniformly distributed over all the network cross-sections.
By applying the momentum and continuity equations over the control volume
containing the junction, the 1D equation was obtained to predict the depth ratio
(upstream to downstream). The results were verified by [8] for the junction angle
of 45°.

Later on, [48] carried out a similar study for junction angles of 30°, 60°,
and 90°. Based on assumptions that were slightly different from those made
in [8], [9] verified the condition of the energy levels equality at the junction node.
The equality of energy levels is simplified to the equality of water levels under
a small velocity head. This model is given here by the Equality model taken
from [9]. Further studies were conducted by [10]. The main flow characteristics are
investigated. The flow is supposed to be subcritical everywhere. The energy and
momentum balances are applied over the control volume in a model similar to [8].
The energy and momentum correction factors are equal to unity. The outcome
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model is given here by the Gurram model. This model is used to predict the
water depth ratio at the junction. Similarly and under the same assumptions
as in [10], [11] applied the momentum and energy balances. The energy and
momentum losses are considered by introducing energy and momentum correction
factors. These factors were computed in previous experiments by [11] for 30°,
45°, and 60° junction angles and by [40] for the 90° junction angle. The outcome
model is given here by the Hsu model. The Hsu model is used to predict the water
depth ratio at the junction. Lastly, [12] introduced a general nonlinear formulation
of the momentum and continuity equations. The assumptions of the channel
depth equality and the channel width equality at the junction node are removed.
However, the Shabayek model implies the use of two empirical coefficients. These
coefficients require further characterization as stated by [50]. Therefore, they are
excluded. The previous models belong to the same category (classical models).
The classical models have been deduced by engineers for a network of three
rectangular channels. The network consists of three branches and a single junction.
Different junction angles are considered. The flow is supposed to be subcritical
everywhere in the network. As for the supercritical flow in a channel network, [37]
deduced a mathematical model to predict the water depth ratio at the junction.
However, the Rice model is not included in our work as the model was derived for
the supercritical flow case. Going back to the classical models in the subcritical
flow domain, the characteristic and mass conservation equations are used to close
the system at the junction in the 1D numerical simulations. The characteristic
equations are heavily presented in [39]. They are extended in [51] to be a generic
solution of the SWE. The mass conservation equation is fairly explained in [13, 15]
where the physical aspects of the water flow are covered. In this paper, the classical
models are the Equality, Gurram, and Hsu models. They are used to supply the
conditions at the junctions for the purposes of numerical simulations.

Due to the absence of further mathematical evidence of the classical models,
an alternative method has been extensively discussed by mathematicians to
provide the conditions at the junction. Starting from the well posed Riemann
problem in networks, [24] proved the well posed Riemann problem for the p-system
at an ideal junction. The results are justified for the Euler system in the standard
case. Two years later, [26] proved the existence and the uniqueness of the Cauchy
problem solution for a 2 x 2 system of conservation laws at the junction. In
particular, [25] extend the 1D Euler model to define the junction. The Cauchy
problem is proved to be well posed. The outcome model describes the non-viscous
isotropic or isothermal fluid across the junction [25]. Later on, [43] proved the
existence and uniqueness of the Riemann problem solution of the 1D-SWE in an
ideal junction network. The flow is supposed to be subcritical everywhere. The
flow is symmetric in the downstream channels. It is worth mentioning that the
hyperbolic theories developed in [17, 19, 22, 4] prepared to a large extent the
grounds for [43] findings. However, the Riemann solution for an ideal network is
limited. There is no physical meaning of the solution. Recently, [52] have extended
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the Riemann solution of the 1D-SWE for the general junction network despite the
symmetry assumed in [43]. Thus, the physical meaning of the solution stages
is given. The necessary conditions are the fulfillment of the energy dissipation
concept and the non-transition state of the flow. Therefore, the entropy condition
is used to select the proper wave to pass through the junction. Furthermore,
the Riemann solution has an additional advantage which allows the bottom
discontinuities at the junction node.

As previously explained, there are two approaches to supply the junction
conditions in 1D numerical simulations of channel networks. The first approach
is defined by the classical models. The classical models have been well studied
in many works. The Equality, Gurram, and Hsu, Shabayek models have been
investigated for both steady and unsteady flows in junction networks by [7].
[7] demonstrate that the Equality model has poor momentum conservation at
the junction. The Froude number (Fr) is greater than 0.35. Also, [7] demonstrate
that the junction angle § (the angle between the main and lateral channels) is
shown to be of less influence than the downstream Froude number (Fr) on the
junction flow. However, the results in [7] are only given for the asymmetrical
confluence [53], where a flume with a concordant bed (i.e., the bed is continuous
at the junction with the same level in all channels) and a straight main channel are
considered. Therefore, the [7] study ignored the effect of the bottom discordance
and other types of confluences and diffluences such as symmetrical confluence (i.e.,
Y-shaped) [53]. Indeed, the behavior of the classical models is doubtful and it is
not complete in the literature. It is also noticed that the classical models are not
mathematically easy to investigate. In particular, the existence and uniqueness of
the solutions of classical models are hard to investigate. The second approach is the
Riemann model. The Riemann model is tested firstly and only by [29] for an ideal
unsteady flow case. However, there are still many issues concerning the behavior
of the Riemann model missing in the literature. In this thesis, a complete revision
of the junction models being either the classical models or the Riemann model is
presented. We include most of the experiments in the literature to evaluate the
junction models. The advantages and disadvantages of each model are well stated.

Many experiments concerning the junction flow in a network have been
found in the literature. A selective set of these experiments with sufficient diversity
is considered. [11, 40] performed experiments to determine the characteristics of
the flume flow. The flume consists of three rectangular channels. The flow is
considered to be subcritical and steady. The bottom friction is neglected. The
junction angle ¢§ is ranging from 30° to 90°. Another steady flow experiment in
flume was conducted by [50] for the junction angle ¢ equal to 30° and 60° with
a small bottom slope. The channel bottom is flat. In other words, the bed is
a concordant. A different experiment examines the effect of the bed discordance
on the junction flow by [54, 55]. The flow field at the confluence is affected by
the bed discordance (i.e., the bed level is not the same in all channels and is
discontinuous at the confluence) between lateral and mainstream channels. In
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the previous experiments, the networks were asymmetrical. A different type of
networks was found in nature where the network was symmetric such as the
Y-shaped confluences. Therefore, the experiments by [56, 57] were performed
to study the junction flows in such confluences. The bed is discordance using
the available experimental data, the junction models are validated through the
analytical solutions provided in [52] for the unsteady flows in the junction network.
Technically, a hybrid method to solve the nonlinear systems [46] is used as
a compulsory step to the numerical simulations. Here, the nonlinear systems are
the junction models.

The 1D-SWE are numerically solved to perform the numerical simulations
that correspond to previous experiments. Different numerical methods, such
as the finite difference method (FDM), the finite element method (FEM), or
the finite volume method (FVM) can be used to numerically solve the SWE;
see [58, 7, 35, 36, 59] and the references therein. In addition to the Eulerian mesh
based methods, the Lagrangian meshless methods are also adopted to solve the
1D-SWE; see [38] for more details and the references therein. Independently from
the used numerical method, when solving the 1D-SWE in open channel networks,
mathematical difficulties are found at the intersection of channels (4. e., junctions)
as the internal boundaries at the junction are singular points. Therefore, proper
treatment of the boundaries is necessary to ensure the well-posedness of the
numerical scheme [24]. The FVM is used in this thesis without any loss of
generality. We consider the Dumbser Osher Toro (DOT) Riemann solver [60]
to discretize the 1D-SWE of subcritical flows in open channel networks. The
conditions at the internal boundaries are given by the numerical solution of one of
the junction models (Equality, Gurram, Hsu, or Riemann models). The numerical
scheme is based on the Fortran coding language [61].

The rest of the chapter is organized as follows: The junction models are
explained in Section 4.2. In Section 4.3, the DOT Riemann solver is explained to
form a numerical scheme. Next, the junction models are tested for both steady and
unsteady open channel flows. The results are given in Section 4.4. The numerical
results are compared to the experimental data and the analytical solutions for
steady and unsteady flows, respectively. Finally, a summary and conclusion are
given in Section 4.6.

4.2. Junction models

In this chapter we describe nonlinear junction models. Junction models are
used to provide internal boundary conditions for numerical simulation purposes.
The junction models are classified into two categories. The first category is
the mathematical model that matches the flow physics which is pointed by
the Riemann model [52]. The second category are the classical physical models
that are derived by engineers. These models are indicated by the Equality [9],
Gurram [10], and Hsu [11] models. Note that the Gurram and Hsu models are
adopted here to be used in general channel networks. The Gurram and Hsu
models are modified to predict the water depth ratio at the Y-shaped confluence
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(Figure 21). They are derived in Appendices A and B. Indeed, the lateral bed
discordance effect on the junction flow is taken into account in the modified
Gurram and Hsu models.

i

lateral channel

T main downstream
channel

C

junction node

main upstream
channel

Figure 21. Y-shaped channel network with non-straight main channel

4.2.1. The Riemann model

The Riemann problem at the junction is written analogously to the classical
Riemann problem in a single open channel. The classical Riemann solution
is extensively described in [14] for a continuous bed and in [3, 4, 21] for
a discontinuous bed. For a junction network of three rectangular channels, the
Riemann problem consists of the system given in Equation (79). It is completed
by the following constant initial conditions in each channel:

h(x,()) hok
w(z,0) | = |uy |, k=1,2,3 (184)
z(z,0) 2,

where the indices k=1, k=2, and k = 3 specify the channel name being the
main upstream channel, the lateral channel, and the main downstream channel,
respectively. The unknowns (discharges and depths) at the junction node can be
predicted using the Riemann solution of system (79)—(184). This method was for
the first time reported by [29] in their work on ideal networks. Therefore, the
Riemann model structure gives the following system:

3
> by, =0, k=1,2,3 (185)
k=1

ui ui

2—g+h1+z1=2—g+hk+zk, k=23 (186)

uk_uok+ka(hokvhk)zov k:1,2,3 (187)
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where

2( V gh’ok_ V ghk)a hk < h’ok
f (hok7 hk) - g/ 1 1
(hok =hi)\/ 5 (i + 2 )s P = how
(hoi» Uyi) Tepresent the initial states, b is the channel width. In this chapter, the
channel bed heights z; =23 =0, and 2z, # 0 are forming the bottom step between
the second (lateral) channel and the main channels, as shown in the upper part
of Figure 21. The symbolic quantity
oL i =L k=123
k -1, if z,=0, k=1,2,3

(188)

(189)

specifies the inner boundary edge at the network junction. L is the length of each
channel. The relationships in Equation (187) give the proper SWE wave (i.e.,
either a shock or rarefaction wave) in each channel to pass through the junction.
They are computed using the Rankine-Hugoniot conditions or the constancy of
the Riemann invariants; see [14]. The continuity equation, or in other words, the
mass conservation is shown by Equation (185). It must be satisfied together with
the total head equality (Equation (186)) at the junction. The hypothesis of the
total head and the flow discharge preservations in a single 1D open channel over
the bottom step is discussed by [23, 62]. These hypotheses are also investigated
by [52] for the junction network of three non-identical channels that are shown
explicitly in Chapter 3.

4.2.2. The Equality model
The Equality model is considered to be the simplest model among all other
junction models. It is given in the following form:

3
> by, =0, k=1,2,3 (190)
k=1
h1 :h2+22 (191)
h2 +Z2 - h?) (192)
ukhk:Akhk+Ck" k:].,?,g (193)

where A =ug++/gh, and C = Fh,/gh,; the sign depends on the characteri-
stic direction at the junction. Since the flow is supposed to be subcritical eve-
rywhere, then three characteristics (left and right) are involved at the junction.
Equation (190) gives the mass conservation and Equations (191)-(192) fulfill the
water elevation equality at the junction. These assumptions have been recogni-
zed by [9]. The energy equality at the junction is simplified to the water level
equality such that the kinetic head is considered small. Equation (193) gives the
characteristic equations where three relationships are obtained; see [39, 51] for
more details about the characteristic SWE method.

4.2.83. The Gurram model

The Gurram formula by [10] to predict the depth ratio (hy/hg) at the
junction was based on the momentum conservation principle. [10] assume the
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water depth equality upstream of the junction. The channels are equal in width.
The Gurram formula is limited to the asymmetrical channel networks of equal
width and with a flat bed. Here, the Gurram formula is rather generalized to
treat the discordant bed and any network configuration. More details about the
derivation of the modified Gurram formula are given in Appendix A. Meanwhile,
the depth and discharge unknowns at the junction are determined through solving
the following nonlinear system:

3
> Mbyhyu, =0, k=1,2,3 (194)
k=1
hy=hy+ 2 (195)

+

3
hy bshy 2 2by hg
— | cos(Q)— 142F— | —= —= | z5cos(d
(h:s) ) (blh:s) l bs h3 2008(0)
2
hyu bih bihiu 86
oFr? | | 2L | cos(Q)+ | —2—2L— 1— 221 ) cos () =0
l <h3U3 ) ) byby(hy —25) bshsus 9

ukhk:Akhk—‘er, k:1,2,3 (197)

(196)

where Fr is the main downstream Froude number. €2 is the angle between the
main upstream channel and the main downstream channel as shown in Figure 21.
h is the depth over the lateral bed step and it is computed according to [62, 52].
Equation (194) satisfies the mass conservation principle. Equation (195) is claimed
by assuming the water elevation equality upstream of the junction. Equation (196)
is the modified Gurram formula. Finally, Equation (197) is obtained by the
characteristic equations according to [39, 51| being three relationships associated
to three characteristics.

4.2.4. The Hsu model

The [11] formula is derived similarly to the Gurram formula, but the
energy and momentum coeflicients taken are different from unity. The depth and
discharge unknowns at the junction are determined through solving the following
nonlinear system:

3
> by, =0, k=1,2,3 (198)
k=1
hl == h2 +Z2 (199)

3
h bsh 26Fr? [ 2b h,
(h;) cos(Q) — (bjh;) llJr . (b;) (h%) 22cos(6)] +

) (200)
26F% | [ hyu, b3h, b hyu,
— || | cos()+ | —FF—— 1——=—=—=]cos(d)| =0
v <h3U3 ) byby(hy —2) bshzus “l
ukthAkhk—‘er, k:1,273 (201)

where (3 is the momentum coefficient and ~ is the energy coefficient. Equation (198)
satisfies the mass conservation, while Equations (199) are claimed by setting
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equal water elevation upstream of the junction. Equation (200) gives the modified
Hsu formula shown in Appendix B and Equation (201) is obtained through the
characteristic equations according to [39, 51].

4.3. Numerical method

A numerical method has to be used to solve the 1D-SWE in channel networks
numerically. There are many methods that can be used. Since the shallow water
equations system is a class of a hyperbolic conservative system, we use the Finite
Volume Method (FVM). The FVM has been widely used to descretize the SWE [14].
The FVM is the numerical method to represent and convert the PDE into algebraic
equations [63, 14, 18]. In the FVM, PDE are integrated and evaluated over the
control volume. The integral form of the PDE contains a divergence term that
is converted into the surface integral by using the divergence theorem that is
known as Gauss’s theorem [64]. The surface integral is evaluated through the
flux at the boundaries of the cells. The most famous form of the FVM is the
Godunov scheme [65]. The Godunov method is a conservative form of the FVM
which requires the Riemann problem to be solved exactly or approximately at each
boundary of cells. The Godunov scheme is considered to be the basis of higher
order schemes. The most significant difference is the way to compute the Godunov
flux. [66] present a novel approach to solve the Riemann problem approximately
to evaluate the Godunov flux. The resulting Riemann solver is known as the HLL
Riemann solver. It is extended by [67] and called the HLLE Riemann solver. The
HLLE solver is modified by [67] and named HLLM. However, the HLL and HLLE
Riemann solvers are limited to the 2 x 2 hyperbolic system such as the 1D-SWE.
It cannot be used for a large system [14]. Later on, the HLLC solver is proposed
by [68, 68] for a time dependent Euler system. Another well known Riemann
solver is the Roe Riemann solver [69]. Many refinements of the Roe Riemann
solver have been made over the last twenty years [14]. At the same time, the Osher
Riemann solver was introduced in [70, 71]. We recommend the handbook to find
more information about the progression history of the Osher Riemann solver [14].
Recently, [60] have produced the DOT Riemann solver. They were motivated by
the capability of the DOT Riemann solver to solve the quasilinear PDE. Based on
that, we have decided to use the DOT Riemann solver to perform the numerical
simulations. The DOT Riemann solver is explained in the next subsection.

4.8.1. DOT Riemann solver
We start by integration of Equation (3) over the finite control volume. We
get the following path-conservative formulation [60]:

At
witt :W?—A—x(ﬂ);% ”7?_%) (202)

where the fluctuations Z);ti , have to satisfy the compatibility condition:
2
N

1
D4 +D}, :/A(w(wiﬂ,wi,s))ads (203)
0
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W7 refers to the cell average of the non conservative variables at time ¢"™. The
uniform spatial step is Az =ux;, 1 —x; 1 and the time step is At =" —n We

choose the linear integration path 4(s) [60] in the parameter s € [0,1]:
P(s) =H(W™ W 5) =W~ +s(W"—W7) (204)

The Osher fluctuations term becomes:

( /A ))ds / |A<w<s>>ds)<wmwi> (205)

By using the Gauss-Legendre quadrature, the analytical path integral in Equ-
ation (205) is replaced by

D, =3 (Zw[ ) A (s >>|]><wi+1—wi> (206)

with a given G-point quadrature rule in the interval [0,1]. s, is the nodes and w; is
the weights; see [72]. Note that the DOT Riemann solver for the non-conservative
form of the PDE is automatically reduced to the Osher Riemann solver for the
conservative form [60], if the source term is zero. The time step must satisfy
the Courant-Fredrich-Lewy stability criterion (CFL) to ensure the stability of the

scheme.
Az

At=CFL———~ (207)
max(|u=+cl|)
where CFL < 1 and ¢ =+/gh is the wave celerity.

Since the computation domain is finite, the numerical scheme has to be
completed with boundary conditions. Therefore, two types of boundary conditions
are necessary. They are the external and internal boundary conditions. The
external boundary conditions are the conditions at the inflow-outflow sections
of the network. They are computed according to the nature of the flow. As we
only work with the subcritical flow, each inflow boundary has two conditions.
One is the physical condition as the discharge hydrograph and the second is the
numerical condition such as the depth. These conditions have to be imposed at
the inflow sections. The numerical condition is computed using the strategy shown
in [51] that is based on the characteristic curves. Taking into account the junction
models, the internal boundary conditions are the conditions at the interfaces of
the junction node. They depend on the number of the segment channels at the
junction. The unknowns for a network of three channels are three water depths
and three water discharges. These unknowns are computed by using one of the
junction models as defined in Section 4.2.

4.4. Numerical results of steady flows

In this section, we present the numerical simulations to reproduce a set
of experiments that are found in the literature for steady flows. The selected
experiments are chosen to include most of the natural effects such as different
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junction angles, different confluences, channel contractions, and bed discordance
at the junction. Therefore, the chosen experiments here are due to [54, 11, 40, 57,
50]. Each experiment is fully described in the next subsection.

4.4.1. Steady flow in asymmetrical confluence with lateral concordant bed

(1) Hsu experiments: [11] carried out experiments in a rectangular flume, Fi-
gure 21, where the angle 2 =0 and the bed heights were z; =2, =25 =0. The
lateral and main channels were 1.5 and 6m long, respectively. The channel
width was 0.155m for both lateral and main channels. The junction angles §
were 30°, 45°, and 60°, whereas in the experiment [40], the lateral and main
channels were 4 and 12m long, respectively, the channel width was 0.155m
in both channels with the junction angle § of 90°. The Froude number Fr was
smaller than 0.7.

(2) [50] experiment: a rectangular flume as shown in Figure 21 was considered
where the angle 2 =0 and the bed heights are z; = z5 = z; = 0. Both the lateral
and main channels were 0.30m wide and 0.50m deep. The main channel was
10m long with a small bed slope of 0.141,%. The junction angles were 30°
and 60°. Similarly to the Hsu experiments, the downstream Froude number
Fr was smaller than 0.7.

The numerical scheme (Section 4.3) is used to reproduce the previous expe-
riments. The scheme is equipped by the solutions of the junction models (Sec-
tion 4.2). Thus, the inner boundary conditions are determined. The mean values
of B and ~ are taken equal to 1.12 and 1.27, respectively. However, the mean
values of the momentum and energy coefficients are selected according to the sug-
gestions provided in [11]. The relative error percentages (E) are calculated between
the predicted depth ratio (X = h,/hg) and the corresponding experimental value
for a quantitative comparison between the experimental results and the numerical
results. Therefore, the following formula is used to compute E
| X

- X |
exrp num 1 2
T I 100 (208)

exrp

E=

where X, , refers to the experimental depth ratio (main upstream to downstream)
in [11, 40, 50]. X refers to the depth ratio which is computed using either the

Riemann, Equality, Gurram, or Hsu model.

num

Table 1. Relative error percentages in the determined depth ratio hy/hs at the junction,
compared to the experimental data of [11, 40]

Junction angle § | Riemann | Equality | Gurram | Hsu

30° 2.68 10.59 3.02 0.72
45° 2.87 11.64 2.37 0.61
60° 2.88 13.02 2.48 1.27

90° 5.84 19.91 3.78 2.21
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Table 2. Relative error percentages in the determined depth ratio hy/hg at the junction,
compared to the experimental data of [50]

Junction angle § | Riemann | Equality | Gurram | Hsu
30° 2.83 17.84 1.54 1.64
60° 5.62 20.63 0.70 1.49

In Figure 22, the junction models are compared to the experimental data
of [11, 40]. The depth ratio hy/hg is plotted versus the discharge ratio Q,/Q5
(Q = bhu). The junction angles ¢ are 30°, 45°, 60°, and 90°. Figure 23 shows
the performance of the junction models against the [50] data, where the junction
angles are 30° and 60°. It is noticed that good agreement between the numerical
results and the experiments is obtained, if the Riemann, Gurram, and Hsu models
are used. On the contrary, The worst behavior is rendered by the Equality model.
This is not surprising as the Equality model has bad performance for Fr greater
than 0.35 as confirmed by [7]. And, in these experiments the Froude number Fr
ranges between 0.52 and 0.7. Quantitatively, the relative error percentages are
listed in Tables 1-2. The errors are corresponding to Figure 22 and Figure 23.
The effect of the junction angle is also well noticed in these such Tables. As
far as the results are considered, the Equality model gives the maximum error
percentage (19.91%) while the Hsu model gives the minimum error percentage
(0.61%) followed by the Gurram model (2.37%) and the Riemann model (2.68%).
In general, the error with the Riemann model is near to the errors with the Gurram
and Hsu models for the junction angles of 30°, 45°, and 60°. On the contrary, the
difference increases for the 90° junction angle.

According to the current results, we can say that it is not only the
momentum based junction models (the Gurram and Hsu models) the can be
used with an acceptable error (less than 8%) as stated in [7], but it is also the
Riemann model that gives tolerable errors. The Riemann model is classified to be
an energy based model. However, the use of the momentum based junction models
(the Gurram and Hsu models) is not trivial in many situations due to the empirical
coeflicients such as energy and momentum coefficients. These coefficients require
proper calibration based on the geometry of the junction and on the characteristics
of the flow dynamics. This fact is highlighted in the following subsections.

Table 3. Error percentage in computed downstream velocity u; relative to experimental
layout of [54] approximated by TELEMAC-2D software

Junction model | Discordant bed

Riemann 0.60
Equality 1.78
Gurram 7.05

Hsu 5.95
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Figure 23. Numerical solutions vs. experimental data of [50] with the junction
angles of 30° and 60°

4.4.2. Steady flow in asymmetrical confluence with lateral discordant bed

(1) According to [54], the discordant bed noticeably affects the flow in
river confluences even with a small Froude number (e.g., Fr less than 0.35).
Therefore, a further study to investigate the behavior of the junction models
is presented for the lateral discordant bed case. [54] carried out experiments in
asymmetrical confluence such that Q=0 and 6 =30° (Figure 21) to investigate
the effects of the bed discordance on the confluence flow. The study focuses on
four flow dynamics regions at the junction, i.e., the flow deflection zone, the
separation layer, the velocity, and the mixing layer. Following the work of [54], we
consider the numerical experiment characterized by the main upstream channel,
the lateral channel, and the main downstream channel. These channels are 0.12,
0.08, and 0.137m wide and 3.5, 3.5, and 10m long, respectively. The height of
the lateral bed is 0.03m. The Froude number Fr is less than 0.20. The discharges
are 2.688-1073, 2.808-1072, and 5.496-102 m?3s~! in the main upstream, lateral,
and main downstream channels, respectively. The corresponding depths are 0.16,
0.13, and 0.16 m. The discharge ratio @), between the main upstream channel and
the lateral channel is equal to 1.04. The experimental data by [54] is not available.
Therefore, the TELEMAC-2D software [73] is employed to produce a cross-section
averaged in such a way that it can be used as a reference solution for 1D models.
Indeed, the experiments by [54] are approximated and the corresponding 2D
numerical results are averaged on a cross-section located 8 m downstream of the
Jjunction.

A significant difference between the Riemann and Equality models on the
one hand, and the Gurram and Hsu models on the other hand is observed.
Figure 24 shows the matching between numerical solutions and approximated
experimental data of [54]. The results obtained by the Gurram and Hsu models
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might be affected by specific values of the energy and momentum coefficients
(8=1.12 and v =1.27). However, the recalibration of such coefficients is beyond
the present work that is conceived on the contrary to avoid case-dependent
coeflicients as much as possible. The bed discordance divides the four models into
two categories: empirical (Gurram-Hsu) and non-empirical (Riemann-Equality)
models. Observing the relative error behavior as listed in Table 3, the maximum
error (7.05%) is obtained by the Gurram model and followed by the Hsu model
(5.95%). The minimum error (0.60%) is obtained by the Riemann model followed
by the Equality model (1.78%).

0.25 T T T T \ \

4 g 4 <4 < 47«4 4 <
L SO S S § § & & & & & & & & ¥ &
A A A AN A A A A A A
02+ g |
015 .
&
s 0l a a * P. Biron 1996
O Riemann
0.05 - O Equality
<] Gurram
/A Hsu
0@ | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

t(s)
Figure 24. Four different numerical solutions for downstream velocity vs. time for discharge
ratio @,=1.04. The experimental layout of [54] is approximated by the TELEMAC-2D software

The computations show that the momentum based junction models (Gur-
ram and Hsu models) are hardly extendible to more general cases without tuning
the empirical coefficients (8 and ) even if Fr < 0.3. The highest error value obta-
ined by the Gurram model is very near the 8% limit of acceptability that is stated
in [7]. Such limitations declare a level of weakness to the momentum based me-
thods. For Fr < 0.35, the results disproved the [7] findings. We can observe that the
Riemann model attains the best agreement with the approximated experimental
layout of [54].

Table 4. Error percentage in computed downstream velocity u4 versus experimental layout
of [57] approximated by TELEMAC-2D software

Junction model | Concordant bed | Discordant bed

Riemann 1.08 2.33
Equality 6.67 7.76
Gurram 3.86 4.49

Hsu 6.19 7.23
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4.4.8. Steady flow in Y-shaped confluence with lateral concordant and discordant
beds

(1) The experiments performed by [57] are used to test the effect of the bed
discordance on the flow at the Y-shaped confluence with =46 =45° in Figure 21.
Thus, they are used to validate the junction models. The [57] experimental data
is presented in the 3D form. The TELEMAC-2D software is used to approximate
the [57] experimental layout to use this data in the 1D framework. The averaged
cross-section values of the downstream velocity located at 4m are obtained
downstream of the junction. These values are used to validate the 1D numerical
simulations. The lateral channel is 0.3 m wide and 2.4m long. The main channel
is 0.4bm wide with 2.4 and 4.8m long in the main upstream channel and the
downstream channel, respectively. This test case is divided into two cases: the first
is due to the concordant bed and the second is due to the discordant bed. For the
concordant bed case (i.e., z, = 0), the discharges are 3.12-1072, 1.68-1072, and
4.8-102m?3s ! in the main upstream channel, the lateral channel, and the main
downstream channel, respectively. The corresponding water depths are 0.25m
in all channels. The discharge ratio @), between the lateral channel and the
main downstream channel is equal to 0.35. For the discordant bed case (i.e.,
2, = 0.05m), the discharges are 1.8-1072, 3.0-1072, and 4.8-10"2m3s~!. The
corresponding water depths are 0.30, 0.25, and 0.30m with @, =0.6.

Table 5. Initial water depth, discharge profiles, and bed heights for unsteady flow in a star
network with a concordant bed at t=0

Variables | Upstream main channel | Lateral channel | Downstream main channel
h (m) 0.5 0.5 1.0

Q (m?s71) 0.1 0.1 0.0

z(m) 0.01 0.01 0.01

Figures 25—-26 show a comparison between the junction models in matching
the reference data of [57] at the Y-shaped confluence with a concordant and
discordant bed, respectively. Fr was less than 0.27 in both cases. However,
a significant difference between the numerical solutions and the reference data
of [57] is noticed. In particular, the Equality, Gurram, and Hsu models did not
well match the reference data of [57]. The influence of the bed on the solution
is noticed in Table 4. The error percentages are approximately increased by 1%
comparing the discordant vs. concordant bed. The Riemann model shows the best
agreement with the reference data of [57]. It is followed by the Gurram, Hsu, and
Equality models, respectively.

4.5. Numerical results for unsteady flows

Junction models in unsteady flow conditions are not fully validated in
the literature. Few studies only have been performed; cf. [74, 7, 38, 29]. Here,
analytical Riemann solutions for a symmetric fluvial flow according to [43] and
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Figure 25. Numerical solutions for downstream velocity vs. time for discharge ratio
Q,=0.35. The experimental layout of [57] is approximated by the TELEMAC-2D software
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Figure 26. Numerical solutions for downstream velocity vs. time for discharge ratio @,= 0.6.
The experimental layout of [57] is approximated by the TELEMAC-2D software

Table 6. ¢! error in determined water depths with respect to analytical solutions according

to [43]
Junction model | Upstream channel | Lateral channel | Downstream channel
Riemann 1.6997-1073 1.6997-1073 4.2037F-1073
Equality 1.1143-1072 1.1143-1072 2.8994-1072
Gurram 4.3977-1073 4.3977-1073 1.2914-1072
Hsu 2.1425-1073 2.1425-1073 5.9129-1073

for a general fluvial flow according to [52] are used to validate the junction models

discussed in Section 4.2.
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4.5.1. Unsteady flows in star network with concordant bed

Consider the general network layout that is illustrated in Figure 21 such
that Q@ = ¢ =45°. Three rectangular channels with equal width (i.e., by = by =
b; =1.0m) and equal length (i.e., L = Ly = Ly = 1m) are connected at the
junction forming a star network. The flow is assumed to go from the first and
second channels (main upstream and lateral channels) to the third channel (main
downstream channel).

Table 7. ¢! error in determined water discharges with respect to analytical solutions
according to [43]

Junction model | Upstream channel | Lateral channel | Downstream channel
Riemann 4.2644-1073 4.2644-1073 8.8333-1072
Equality 3.5669-102 3.5669- 102 3.8996- 1072
Gurram 1.1279-102 1.1279-102 1.7570-102
Hsu 6.4912-1073 6.4912-1073 1.0272-102

Thus, taking into account the given piecewise constant initial states in
Table 5, we observe that the current study case is the counterpart of the dam break
problem in a single open channel [14]. The unsteady simulations are performed
by using the numerical scheme presented in Section 4.3. The external boundary
conditions and the constant discharges are chosen upstream of the lateral and
main channels. The downstream condition is the dynamic rating curve due to the
subcritical flow conditions. The inner boundary conditions are supplied at each
time step by solving the junction models according to Section 4.2. The spatial
grid Az is 0.02m. The time step is computed according to Equation (207). The
mesh cells number N is equal to 50 cells.

Figures 27—28 show the numerical results for the junction models (Riemann,
Equality, Gurram, and Hsu models). The ¢! errors for water depths and water
discharges are listed in Tables 6—7, respectively. They are determined according
to the following formulas:

N

GZ :A$Z‘h2($i,t)—hk(1’i,tﬂ, k:1a273 (209)
=1
N

ef =AxY |Qi(r;t) = Qulat)], k=1,2,3 (210)

i1

where A* and @Q* are the water depths and the water discharges obtained using
the analytical solutions. A and @) are the water depths and the water discharges
estimated by the junction models after the time elapsed (¢t =0.2s). N is the mesh
cell number. The best agreement between the numerical and analytical solutions
is demonstrated when the Riemann model is used to supply the inner boundary
conditions at the junction.
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Figure 27. Evolution of water depths after time elapsed of 0.2s. The analytical solutions [43]
are shown by the black solid lines. The Riemann, Equality, Gurram, and Hsu models are
shown by the dashed-dot lines, dashed lines, green solid lines, and dots, respectively
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Figure 28. Evolution of water discharges after time elapsed of 0.2s. The analytical
solutions [43] are shown by the black solid lines. The Riemann, Equality, Gurram, and Hsu
models are shown by the dashed-dot lines, dashed lines, green solid lines, and dots,
respectively

4.5.2. Unsteady flows in star network with discordant bed

By considering the initial profiles given in Table 8 and the same network
setup given in subsection 4.5.1, the numerical solutions are compared to the
analytical solutions according to [52]. Similarly to the previous case, the Riemann
model continues to give the best results among the junction models. However,
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Table 8. Initial water depth, discharge profiles and bed heights for unsteady flow in a star
network with a concordant bed at t=0

Variables | Upstream main channel | Lateral channel | Downstream main channel
h (m) 0.5 0.5 1.0
Q (m3s1) 0.1 0.1 0.0
z(m) 0.02 0.02 0.0

Table 9. ¢! error in determined water depths with respect to analytical solutions according

to [52]
Junction model | Upstream channel | Lateral channel | Downstream channel
Riemann 2.8259-1073 2.9823-1072 4.4822-1072
Equality 3.3888-1073 1.3163-1072 1.3813-1072
Gurram 9.9045-1073 2.4654-1072 3.7784-1072
Hsu 6.6270-1073 2.1015-1072 3.03213-1072

Table 10. ¢! error in determined water discharges with respect to analytical solutions
according to [52]

Junction model | Upstream channel | Lateral channel | Downstream channel
Riemann 8.3438-1073 7.7162-1073 1.0197-1072
Equality 1.0211-1072 4.0485-1072 2.3116-1072
Gurram 3.0104-1072 7.4928-1072 6.5073-1072
Hsu 1.9684-1072 6.4204-1072 5.1050-10~2
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Figure 29. Evolution of water depths after time elapsed of 0.2s. The analytical solutions [52]
are shown by the black solid lines. The Riemann, Equality, Gurram and Hsu models are
shown by the dashed-dot lines, dashed lines, green solid lines, and dots, respectively

for the first time, it is followed by the Equality model. This might be due to the
consideration of the total head balances at the junction. Figures 29-30 confirm the
best agreement between the numerical and analytical solutions according to [52]
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Figure 30. Evolution of water discharges after time elapsed of 0.2s. The analytical
solutions [52] are shown by the black solid lines. The Riemann, Equality, Gurram, and Hsu
models are shown by the dashed-dot lines, dashed lines, green solid lines, and dots,
respectively

if the Riemann model is used. These results can be qualitatively seen from the
listed ¢' errors in Tables 9-10. According to this test case, the solutions by the
Gurram and Hsu models fail to match the analytical solutions even with a small
downstream Froude number Fr. It might be due to the violation of the total head
balance at the junction.

4.6. Conclusion and summary

In this research we investigate the use of an extended Riemann problem
solution to set up the internal boundary conditions at the junction in order to
perform numerical simulations in open channel networks. The internal boundary
conditions are of fundamental importance to develop a well posed numerical
scheme for the 1D-SWE. The proposed model is known as the Riemann model.
A brief description of the Riemann solution is referenced to the results obtained
in Chapter 3. The other junction models such as the Equality, Gurram, Hsu
models are also presented. The Gurram and Hsu models are modified to adopt
to the current study. A full comparison between the junction models (Riemann,
Equality, Gurram and Hsu models) is made in the steady flows over asymmetrical
and symmetrical confluences. A set of experiments are numerically reproduced.
Both lateral concordant and discordant beds are considered at the junction. In
general, the Riemann model is fairly matching the experimental data despite
the angle or the geometric shape of the junction. Thus, this study claims poor
performance in fitting the experimental data if the Equality model is used.
Stressing the importance of the junction angle, the Gurram and Hsu models give
better performance in fitting the experimental data obtained in asymmetrical
confluence of the equal channel width and a concordant bed for different junction
angles. Fr ranges from 0.5 to 0.7. On the contrary, for the asymmetrical confluence



Junction Riemann Problem for Shallow Water Equations in Networks 77

with a non-equal channel width and with a lateral discordant bed and for the
Y-shaped confluence, the Gurram and Hsu models are mismatched with respect to
the reference experimental data even with Fr smaller than 0.35. In unsteady flows
over symmetrical confluences with concordant and discordant beds, the Riemann
model shows the best agreement to the analytical solution given in [43] for the
concordant bed. For the discordant bed, the same results are obtained in matching
the analytical solutions given in [52]. The Gurram and Hsu models mismatch the
analytical solutions and are outperformed by the Equality model. This might
be due to the violation of the total head balances at the junction. Finally, we
conclude that the Riemann model is a good choice to supply the internal boundary
conditions instead of the other junction models such as the Equality, Gurram,
and Hsu models. It includes the following benefits: lack of empirical coefficients,
avoiding complicated models and maintaining a large range of applicability of
the solution. It is as easy to use as the Equality model, so it can be attractive
for model developers. The Riemann solution is supported by theoretical findings
proving its existence and uniqueness. The overall behavior is generally satisfying.

5. Final remarks

In this paper we have shown that the Riemann problem is well posed at the
junction network. The Riemann problem is first defined at the junction network for
symmetric cases. The Riemann solution is given in the framework shown by [43].
Indeed, the Riemann problem is newly extended to the non-symmetric case, where
the channel width variation and bed discontinuities at the junction are considered.
The extended Riemann problem is proven to be well posed. The Riemann solution
is shown to exist and be unique under subcritical flow conditions, and thus, the
necessary physical conditions are given to provide this mathematical evidence. For
the forward facing bed step case, sufficient energy is necessary to pass the step
where the flow cocking is prohibited. For the backward step bed, the flow might
be accelerated, and therefore the relative ratio between the step height and the
downstream depth is mandatory, supported by the energy dissipation conditions.
The solution of the Riemann problem at the junction network is heavily dependent
on the junction curve. The junction curve is shown to be the curve which ensures
the conservation of mass and energy. Two types of waves are the main features of
the solution. The shock and rarefaction waves are part of the solution. Contact
waves might be present at the junction. The results are summarized in a theorem,
and this theorem is numerically validated through a set of numerical examples to
illustrate the solution structure in the phase plane and with time evolution. The
theorem is valid for N number of channels and nodes, as well as for any type of
confluences and diffluences. Due to the lack of mathematical evidence (analysis of
existence and uniqueness) on such classical models as Equality, Gurram, and Hsu
models to supply the inner boundary conditions at the junction, for numerical
purposes, the extended Riemann solution (the Riemann model) is used. The
Riemann model proves to be a proper choice. The Riemann model is supported by
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theoretical findings, which are discussed above. The missing part is how convenient
it is to use the Riemann model to supply the inner boundary conditions to perform
1D numerical simulations in channel networks. The advantages and disadvantages
of the Riemann model compared to the classical model are shown. A set of
experimental data has been used to test each model for steady state flows in
channel networks (asymmetric and symmetric confluences). The Riemann model
proves to perform well with an acceptable error in all simulations. The Equality
model continues to give poor results, in particular with a Froude number greater
than 0.35. The Riemann model has the best results in matching the experimental
data if the bottom becomes discontinuous at the junction. The modified Gurram
and Hsu models shown in Appendices A and B failed in comparison with the
Riemann model to best match the experimental results since the bottom becomes
discontinuous at the junction, even with a Froude number smaller than 0.35. For
unsteady state flow simulations, the Riemann model continues to show the best
results among the other junction models for matching the analytical solutions
provided in [43, 52]. However, the performance of the junction models remains
questionable due to the missing experimental data that could be used to validate
them. Based on the results shown in Chapter 4, the Riemann model is considered
to be a good choice in supplying the inner boundary conditions and includes the
following advantages:

— No empirical coefficients that would limit the applicability of the model are
involved.

— The Riemann model is physically and mathematically identical to the SWE.

— The Riemann model is as simple as the Equality model, which attracts software
developers.

— The Riemann model can be used for networks consisting of N number of
channels and nodes.

— The Riemann model is an energy-based model that can be modified to also
include the energy loss in the system.

— The Riemann model is not limited to a specific network configuration. It is valid
for both confluences and diffluences.

We conclude that the Riemann model can be used to supply the inner
boundary conditions that are supported by the theoretical findings proven in this

paper.

Appendix A

The modified Gurram model

In this appendix we introduce the modified Gurram formula. Taking into
account the assumptions made by [10]. The flow is assumed to be steady with
a small bottom slope. The friction slope is nearly compensated. The flow is nearly
1D in the main channel. The momentum and energy coefficients (5, at AB,
at CD, and v at CD) are assumed to be unity. Flowing towards the junction, the
water flow in the lateral channel is accelerated due to the flow contraction at the
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separation zone [10] and therefore the lateral momentum M, at EH in the later
channel Figure 21 is written as

My = By pbyhaus cos(9) (211)

where p is the water density and S, is the lateral momentum coefficient in the
lateral channel. [10] highlighted that 3, can be computed through the following
relationship

_ bghzug cos(a)
Pr= bohouy cos(d)

« is the angle between the representative lateral velocity vector at EH and the

(212)

main channel direction. A relation between « and § is due to [49] where
8
=6 213
a=g (213)

Due to the presence of the bed step in the lateral channel, the flow mixing is
expected to increase, in particular between the upstream and the lateral channels.
The relationship between § and « has to be recalibrated. However, it is beyond
the aim of this work. Hence, the suggestion of [49] is maintained. Assuming the
hydrostatic pressure distribution, the force exerted by the lateral bottom step
determined according to [52], the equality of the water level rather than the
equality of the water depth between the upstream main channel and the lateral
channel, and taking into account the angle 2, then the momentum balance in
the main downstream channel direction over the control volume ABCDEH in
Figure 21 gives

pbyhyu?cos(Q) + %blh% cos(§2) + pbshgugu, cos(a)+
(214)
rhogbsh, 7 cos(8) = pbyhyul + by h

where h, refers to the depth over the lateral bed step. It is determined by applying
the conservation of the total head over the step. Only the subcritical solution is
considered and the other solutions are omitted as shown in [52]

1 ug 2w+ 6
== — — 1—2cos 21
hg 3 <h3+ % 22> ( cos( 3 )) (215)

hy—
—hg— 3,2

2 /10 0\ %
hyuy hgug
hyug g

For more about the total head concept in a single open channel, we refer to the

such that

0 =arccos | 1—27

(216)

handbook of [16]. Thus, the work of [62, 52] is appreciated for single open channel
and channel networks.
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Multiplying Equation (214) by 2/bsh3 gives

2
20, hyu? by hy 2uqug
—+| = — cos(£2) + cos(a)+
( gb3h§ bs hg (@) ghg ()

(217)
2by h 203
272 Zs N=2811
( b, ) (h%) z5c0s(9) ohs +
The continuity equation implies:
byhyuq +byhoty =bghsus (218)

Using the equality of the water level upstream the junction and substituting
Equation (218) into Equation (217) and with some arrangement we obtain

3
hy bshy 9 2b, h
— Q)— 142Fr=— [ —= -
(h3> os({) <b1h3> l ' bs h3 72e08(0)

+
) (219)
2
2Fr? hyuy cos(§2) + b l—thu1 COS(S—(S) =0
hausg biby(hy —25) bghgus 9
where 5
yus3
Fr=4/—= 220
ghs ( )

Indeed, Equation (219) gives the final Gurram formula that is used in the Gurram
model shown in System (156)—(158).

Appendix B
The modified Hsu model

This appendix contains a derivation of the modified Hsu formula in the
channel network (Figure 21). According to [40], the flows are shown to be
accelerated due to the flow contraction at the separation zone as long as the flow
towards the junction. Taking into account such effect, the momentum coeflicients
are introduced (f; at AB, 5, at FG, 5 at CD, and S, at EH (Figure 21)). In
addition to that, assuming a steady flow, the hydrostatic pressure distribution,
neglecting the friction force, taking into account the angle 2 shown in Figure 21,
the acting force due to the presence of the lateral step, and further assuming
By = By =P =, then the momentum balance in the main downstream channel
direction over the area ABCDEH shown in Figure 21 gives

Bpby hyu? cos(2) + %blh% cos () + Bpbyhyusu, cos(a) + pgbyhzo cos(0) =
(221)
Bpbshgu3 + %53}%25

where u, is the representative velocity at EH and t refers to the entrance of the
lateral channel at the junction. According to [40], the representative velocity u,
is related to the angle « by the following relationship

byhouy
— _ 222
e b,h, sin(a) (222)
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b, and h, are the channel width and the water depth at section EH in the lateral
channel, respectively. Substituting Equation (222) into Equation (221). We get

byh 2
Bpbyhyu? cos(Q) + @blh% cos(2) + Bp(bahyuy)” cot(a) 4+ byh 2z cos(d) =
2 b, (223)
Bpbghgui + %53@’2’,
Furthermore, applying the momentum balance in the lateral channel direction
over the area EFGH shown in Figure 21 gives
Bp(byhyuy)? cos(d—a)
b.h, sin(«)

Finally, taking into account the equality of the water level upstream the junction,

Bpbyhyul + %@h? - %bﬂzf + (224)

letting b, = by/sin(d), further assuming h, = h, based on the experimental
observation by [40], taking into account the effect of the lateral bottom step
h [62, 52], using the mass continuity equation, and substituting Equation (224)
into Equation (223), we obtain

3
hy [ b3y 268 (2by \ ( by
<h3> cos(2) <b1h3> [1—1— 5 b, 02 29€08(0)
2
hyuy b3h, byhyuy _
l(h:au:a) COS(Q)+<b1b2<h122) ! bshzus cos(0)| =0

Equation (225) represents the modified Hsu formula in the System (159).

2Fr?
v

+

(225)
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