PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of adsorption efficiencies of Ni (II) in aqueous solutions with perlite via artificial neural networks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.
Rocznik
Strony
26--32
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Bitlis Eren University, Turkey Faculty of Architecture and Engineering, Department of Environmental Engineering
Bibliografia
  • [1]. Alkan, M. & Doğan, M. (2001). Adsorption of Copper(II) onto Perlite, Journal of Colloid and Interface Science, 243, pp. 280-291.
  • [2]. ASCE, 2000, Artificial neural networks in hydrology. I: Preliminary concepts, Journal of Hydrologic Engineering, 5(2), pp. 115-123, ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.
  • [3]. Bui, H.M., Duong, H.T.G. & Nguyen, C.D. (2016). Applying an artificial neural network to predict coagulation capacity of reactive dying wastewater by chitosan, Polish Journal of Environmental Studies, 25, 2, pp. 545-555.
  • [4]. Erdoğan, S., Önal, Y., Akmil-Basar, C. & Bilmez-Erdemoglu, S. (2005). Optimization of Nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation, Applied Surface Science, 252, pp. 1324-1331.
  • [5]. García-Vaquero, N., Lee, E., Jiménez Castañeda, R., Cho, J. & López-Ramírez, J.A. (2014). Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility, Desalination, 347, pp. 94-102.
  • [6]. Hagan, M.T., Demuth, H.B. & Beal, M.H. (2003). Neutral network design, PWS, Beston 2003.
  • [7]. Hamed, M.M., Khalafallah, M.G. & Hassanien, E.A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks, Environmental Modeling & Software, 19, pp. 919-928.
  • [8]. Jiang, S., Huang, L., Nguyen, T.A., Ok, Y.S., Rudolph, V., Yang, H. & Zhang, D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions, Chemosphere, 142, pp. 64-71.
  • [9]. Malkoc, E. & Nuhoğlu, Y. (2006). Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column, Journal of Hazardous Materials, B135, pp. 328-336.
  • [10]. Moradi, M., Fazizadehdavil, M., Pirsaheb, M., Mansouri, Y., Khosravi, T. & Sharafi , K. (2016), Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent, Archives of Environmental Protection, 42, 2, pp. 33-43.
  • [11]. Nadaroğlu, H., Kalkan, E. & Çelebi, N. (2014). Removal of copper from aqueous solutions by using micritic limestone, Carpathian Journal of Earth and Environmental Sciences, 9, 1, pp. 69-80.
  • [12]. Podder, M.S. & Majumder, C.B. (2016). The use of artificial neural network for modelling of phycoremediation of toxic elements As(III) and As(V) from wastewater using Botryococcus braunii, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 155, pp. 130-145.
  • [13]. Prakash, N., Manikandan, S.A., Govindarajan, L. & Vijayagopal, V. (2008). Prediction of Biosorption efficiency for the removal of copper (II) using artificial neural networks, Journal of Hazardous Materials, 152, pp. 1268-1275.
  • [14]. Ranade, V.V. & Bhandari, V.M. (2014). Industrial Wastewater Treatment, Recycling, and Reuse, Elsevier Ltd, ISBN: 978-0-08-099968-5.
  • [15]. Sarkar, A. & Pandey, P. (2015). River Water Quality Modelling Using Artificial Neural Network Technique, Aquatic Procedia, 4, pp. 1070-1077.
  • [16]. Yesilnacar, M.I. & Sahinkaya, E. (2012). Artificial neural network prediction of sulfate and SAR in an unconfined aquifer in southeastern Turkey, Environmental Earth Sciences, 67, 4, pp. 1111-1119.
  • [17]. Yesilnacar, M.I., Sahinkaya, E., Naz, M. & Ozkaya, B. (2008). Neural network prediction of nitrate in groundwater of Harran Plain, Turkey, Environmental Geology, 56, 1, pp. 19-25.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e5d1043-25db-4824-bc97-20df513ecfdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.