PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Using statistical analysis and pollution indices to characterize metal pollution in volcanic and calcareous soils in semi-arid regions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this study was to evaluate heavy metal contamination in volcanic and calcareous soils within Morocco’s semi-arid regions, focusing on the relationship between unique soil types and contamination dynamics. Using geographic information systems (GIS), statistical analyses, and several pollution indices, including the geoaccumulation index (Igeo), enrichment factor (EF), contamination factor (CF), and pollution load index (PLI), the research integrates physical and chemical properties to uncover the interactions driving contamination. A total of 64 soil samples from volcanic and calcareous origins, collected at a depth of 20 cm, were analyzed for properties such as organic matter, calcium carbonates CaCO₃, pH, electrical conductivity, and texture, and four heavy metals (Cu, Pb, Zn, and Fe). Findings reveal distinct contamination patterns: calcareous soils had elevated pH, high CaCO₃ levels, and moderate salinity, whereas volcanic soils were more acidic, with higher organic matter content and lower salinity. The contamination indices revealed that all soil samples exhibited some level of contamination, with Zn and Fe concentrations in volcanic soils showing moderate to high pollution levels, while calcareous soils generally displayed lower contamination. The Igeo and CF indices confirmed moderate to high contamination in volcanic soils, particularly for Zn and Fe, whereas calcareous soils showed minimal pollution. The EF analysis indicated slightly higher enrichment for Cu and Zn in calcareous soils than in volcanic soils. The PLI values for both soil types were below 1, suggesting low pollution levels overall. Statistical analyses demonstrated that contamination was shaped by soil characteristics like texture, organic matter, and pH, with anthropogenic sources contributing to heavy metal presence. This study provides new insights into the interaction between soil properties and contamination dynamics in contrasting soil types, revealing that volcanic soils are more prone to heavy metal accumulation due to their physicochemical characteristics. By integrating pollution indices and robust statistical approaches, this work highlights the influence of soil geochemistry on contamination patterns and offers valuable information for informing sustainable land management strategies in vulnerable semi-arid regions.
Słowa kluczowe
Twórcy
autor
  • Geomatics, Georesources and Environment Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Béni Mellal, Morocco
  • Geomatics, Georesources and Environment Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Béni Mellal, Morocco
  • Geomatics, Georesources and Environment Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Béni Mellal, Morocco
  • Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP 415 Rabat Principal, 10090, Rabat, Morocco
  • Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden
  • Center for Remote Sensing Applications (CRSA), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
  • Geomatics, Georesources and Environment Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Béni Mellal, Morocco
  • Data4Earth Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Béni Mellal, Morocco
Bibliografia
  • 1. Adhikari, K., Owens, P. R., Ashworth, A. J., Sauer, T. J., Libohova, Z., Richter, J. L., Miller, D. M. (2018). Topographic Controls on Soil Nutrient Variations in a Silvopasture System. Agrosyst geosci environ, 1(1), 1–15. https://doi.org/10.2134/age2018.04.0008
  • 2. Alloway, B. J. (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. 22. Springer Science & Business Media.
  • 3. Anju, M., Banerjee, D. K. (2012). Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India. Environ Monit Assess, 184(7), 4191–4206. https://doi.org/10.1007/s10661-011-2255-8
  • 4. Baadi, K. (2023). Geoheritage: A Growing Research Topic in Morocco and the Middle Atlas. In K. Baadi (Ed.), Geoheritage of the Middle Atlas (Morocco), 3–9. Springer International Publishing. https://doi.org/10.1007/978-3-031-27073-4_1
  • 5. Barakat, A, El Baghdadi, M., Rais, J., Nadem, S. (2012). Assessment of heavy metal in surface sediments of Day River at Beni-Mellal region, Morocco. Res J Environ Sci, 4(8), 797-806.
  • 6. Barakat, A., Ennaji, W., El Jazouli, A., Amediaz, R., Touhami, F. (2017). Multivariate analysis and GIS-based soil suitability diagnosis for sustainable intensive agriculture in Beni-Moussa irrigated subperimeter (Tadla plain, Morocco). Model Earth Syst Environ, 3(1). https://doi.org/10.1007/ s40808-017-0272-5
  • 7. Barakat, A., Ennaji, W., Krimissa, S., Bouzaid, M. (2020). Heavy metal contamination and ecological-health risk evaluation in periurban wastewater-irrigated soils of Beni-Mellal city (Morocco). Int J Environ Health Res, 30(4), 372–387. https://doi.or g/10.1080/09603123.2019.1595540
  • 8. Barakat, A., Hilali, A., Baghdadi, M. E., Touhami, F. (2020). Assessment of shallow groundwater quality and its suitability for drinking purpose near the Béni-Mellal wastewater treatment lagoon (Morocco). Hum Ecol Risk Assess, 26(6), 1476–1495. https://doi.org/10.1080/10807039.2019.1584029
  • 9. Benamrane, M., Németh, K., Jadid, M., Talbi, E. H. (2022). Geomorphological classification of monogenetic volcanoes and its implication to tectonic stress orientation in the middle atlas volcanic field (Morocco). Land, 11(11), 1893. https://www.mdpi.com/2073-445X/11/11/1893
  • 10. Bouchaou, L., Michelot, J. L., Qurtobi, M., Zine, N., Gaye, C. B., Aggarwal, P. K., Marah, H., Zerouali, A., Taleb, H., Vengosh, A. (2009). Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. J Hydrol, 379(3), 323-338. https://doi.org/10.1016/j.jhydrol.2009.10.019
  • 11. Bouzekri, S., El Hachimi, M. L., Touach, N., El Fadili, H., El Mahi, M., Lotfi, E. M. (2019). The study of metal (As, Cd, Pb, Zn and Cu) contamination in superficial stream sediments around of Zaida mine (High Moulouya-Morocco). J Afr Earth Sci, 154, 49–58. https://doi.org/10.1016/j. jafrearsci.2019.03.014
  • 12. Brady, N. C., Weil, R. R., Weil, R. R. (2008). The nature and properties of soils, 13. Prentice Hall Upper Saddle River, NJ.
  • 13. Buol, S. W., Southard, R. J., Graham, R. C., McDaniel, P. A. (2011). Soil genesis and classification. John Wiley & Sons.
  • 14. Chai, H., Rao, S., Wang, R., Liu, J., Huang, Q., Mou, X. (2015). The effect of the geomorphologic type as surrogate to the time factor on digital soil mapping. Open Journal of Soil Science, 5(6), 123–134. https://doi.org/10.4236/ojss.2015.56012
  • 15. Chen, S., Richer-de-Forges, A. C., Leatitia Mulder, V., Martelet, G., Loiseau, T., Lehmann, S., Arrouays, D. (2021). Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France. CATENA, 198, 105062. https://doi.org/10.1016/j.catena.2020.105062
  • 16. Cornell, R. M., Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences, and uses, 664. Wileyvch Weinheim.
  • 17. De Waele, J., Melis, M. T. (2009). Geomorphology and geomorphological heritage of the Ifrane - Azrou region (Middle Atlas, Morocco). Environ Geol, 58(3), 587–599. https://doi.org/10.1007/s00254-008-1533-4
  • 18. Delvaux, B., Herbillon, A. J., Vielvoye, L. (1989). Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon. Taxonomic, mineralogical and agronomic implications. Geoderma, 45(3), 375–388. https://doi.org/10.1016/0016-7061(89)90017-7
  • 19. Deng-feng, T., Ming-xiang, X., Xin-xin, M., Shiqing, Z. (2014). Impact of wind-water alternate erosion on the characteristics of sediment particles. Chin J Appl Ecol, 25(2).
  • 20. El Amari, K., Valera, P., Hibti, M., Pretti, S., Marcello, A., Essarraj, S. (2014). Impact of mine tailings on surrounding soils and ground water: Case of Kettara old mine, Morocco. J Afr Earth Sci, 100, 437–449. https://doi.org/10.1016/j.jafrearsci.2014.07.017
  • 21. El Azhari, A., Rhoujjati, A., El Hachimi, M. L., Ambrosi, J.-p. (2017). Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/ Zn-mining area in NE Morocco. Ecotoxicol Environ Saf, 144, 464–474. https://doi.org/10.1016/j.ecoenv.2017.06.051
  • 22. El Baghdadi, M, Oumeskou, H., Barakat, A., Nadem, S., Rais, J. (2015). Effet de la décharge publique de la ville de Béni-Mellal sur les sédiments et les sols au niveau d’Oued Sabeq. J Mater Environ Sci, 6(11), 3371–3381.
  • 23. El Baghdadi, Mohamed, Barakat, A., Sajieddine, M., Nadem, S. (2012). Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environ Earth Sci, 66(1), 141–155. https://doi.org/10.1007/s12665-011-1215-5
  • 24. El Hamiani, O., El Khalil, H., Sirguey, C., Ouhammou, A., Bitton, G., Schwartz, C., Boularbah, A. (2015). Metal concentrations in plants from mining areas in south Morocco: Health risks assessment of consumption of edible and aromatic plants. CLEAN – Soil, Air, Water, 43(3), 399–407. https://doi.org/10.1002/clen.201300318
  • 25. El Hamzaoui, E. H., El Baghdadi, M., Oumenskou, H., Aadraoui, M., Hilali, A. (2020). Spatial repartition and contamination assessment of heavy metal in agricultural soils of Beni-Moussa, Tadla plain (Morocco). Model Earth Syst Environ, 6(3), 1387– 1406. https://doi.org/10.1007/s40808-020-00756-3
  • 26. Ennaji, W., Barakat, A., El Baghdadi, M., Rais, J. (2020). Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. J Sediment Environ, 5(3), 307–320. https://doi.org/10.1007/s43217-020-00020-9
  • 27. Gąsiorek, M., Kowalska, J., Mazurek, R., Pająk, M. (2017). Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere, 179, 148–158. https://doi.org/10.1016/j. chemosphere.2017.03.106
  • 28. Gray, M. (2013). Geodiversity: valuing and conserving abiotic nature. John Wiley & Sons.
  • 29. Gros, R. (2002). Soil functionning and quality submitted to physical and chemical disturbance: responses of the soil, vegetation, and microbial communities. Ph.D, Université de Savoie. https://theses. hal.science/tel-00006161
  • 30. Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
  • 31. Hilali, A., El Baghdadi, M., Barakat, A., Ennaji, W., El Hamzaoui, E. H. (2020). Contribution of GIS techniques and pollution indices in the assessment of metal pollution in agricultural soils irrigated with wastewater: case of the Day River, Beni Mellal (Morocco). Euro-Mediterranean Journal for Environmental Integration, 5(3), 52. https://doi.org/10.1007/s41207-020-00186-8
  • 32. Hilali, A., El Baghdadi, M., Halim, Y. (2023). Environmental monitoring of heavy metals distribution in the agricultural soil profile and soil column irrigated with sewage from the Day River, Beni-Mellal City (Morocco). Model Earth Syst Environ, 9(2), 1859– 1872. https://doi.org/10.1007/s40808-022-01592-3
  • 33. Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., Chen, B., Zhang, X. Y. 2007. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67(11), 2148–2155. https://doi.org/10.1016/j.chemosphere.2006.12.043
  • 34. Idris, A. M. (2008). Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast. Microchem J, 90(2), 159– 163. https://doi.org/10.1016/j.microc.2008.05.004
  • 35. Khafouri, A., Talbi, E. H., Abdelouas, A. (2021). Assessment of heavy metal contamination of the environment in the mining site of ouixane (North East Morocco). Water Air Soil Pollut, 232(10), 398. https://doi.org/10.1007/s11270-021-05318-6
  • 36. Khosravani, P., Baghernejad, M., Moosavi, A. A., FallahShamsi, S. R. (2023). Digital mapping to extrapolate the selected soil fertility attributes in calcareous soils of a semiarid region in Iran. J Soils Sediments, 23(11), 4032–4054. https://doi.org/10.1007/s11368-023-03548-1
  • 37. Kowalska, J. B., Mazurek, R., Gąsiorek, M., Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ Geochem Health, 40(6), 2395–2420. https://doi.org/10.1007/ s10653-018-0106-z
  • 38. Li Fei, L. F., Wang XiaoYu, W. X., Tang FuQiang, T. F. (2011). Potential ecological risk assessment of heavy metals in the Suburban Farmland soil from Xinxiang city. Henan Norm Univ (Nat Sci Ed).
  • 39. Lu, X., Wu, X., Wang, Y., Chen, H., Gao, P., Fu, Y. (2014). Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol Environ Saf, 106, 154–163. https://doi.org/10.1016/j.ecoenv.2014.04.022
  • 40. Martin, J. (1981). Le Moyen Atlas central, étude géomorphologique. Notes Mem Serv Geol.
  • 41. Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., Kępka, W., Tymczuk, M., Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126
  • 42. Mazurek, R., Kowalska, J. B., Gąsiorek, M., Zadrożny, P., Wieczorek, J. (2019). Pollution indices as comprehensive tools for evaluation of the accumulation and provenance of potentially toxic elements in soils in Ojców National Park. J Geochem Explor, 201, 13–30. https://doi.org/10.1016/j. gexplo.2019.03.001
  • 43. Meharg, A. A. (2011). Trace Elements in Soils and Plants. 4th edition. By A. Kabata-Pendias. Boca Raton, FL, USA: CRC Press/Taylor & Francis Group (2010), pp. 548, US$159.95. ISBN 9781420093681. Exp Agric, 47(4), 739–739. https://doi.org/10.1017/S0014479711000743
  • 44. Michard, A., Frizon de Lamotte, D., Saddiqi, O., Chalouan, A. (2008). An Outline of the Geology of Morocco. In A. Michard, O. Saddiqi, A. Chalouan, D. F. d. Lamotte (Eds.), Continental Evolution: The Geology of Morocco: Structure, Stratigraphy, and Tectonics of the Africa-Atlantic- Mediterranean Triple Junction 1–31. Springer Berlin Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-540-77076-3_1
  • 45. Michard, A. (1976). Elements of Moroccan geology. Notes Mem Geol Serv, 252–408.
  • 46. Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Hum Ecol Risk Assess, 24(8), 2070–2087. https://doi.org/10.1080/10807039.2018.1438173
  • 47. Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., Lester, J. N. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric Ecosyst Environ, 112(1), 41–48. https://doi.org/10.1016/j. agee.2005.04.028
  • 48. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GEO J.
  • 49. Ololade, I. A. (2014). An Assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. J Environ Protect, 5(11), 970–982. https://doi.org/10.4236/ jep.2014.511098
  • 50. Oumenskou, H., El Baghdadi, M., Barakat, A., Aquit, M., Ennaji, W., Karroum, L. A., Aadraoui, M. (2018). Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arab J Geosci, 11(22), 692. https://doi.org/10.1007/s12517-018-4021-5
  • 51. Rastegari Mehr, Meisam, Keshavarzi, B., Moore, F., Sharifi, R., Lahijanzadeh, A., Kermani, M. (2017). Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J Afr Earth Sci, 132, 16–26. https://doi.org/10.1016/j.jafrearsci.2017.04.026
  • 52. Robert, M. (1996). Le sol. Interface dans l’environnement, ressource pour le développement. Elsevier Mason SAS. https://hal.inrae.fr/ hal-02836057
  • 53. Salmanighabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Fadic-Ruiz, X., Vidal-Cortez, V., Cereceda-Balic, F., Pinilla-Gil, E. (2015). Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Sci Total Environ, 527–528, 335–343. https://doi.org/10.1016/j. scitotenv.2015.05.010
  • 54. Sharples, C. (1995). Geoconservation in forest management-principles and procedures.
  • 55. Shoji, S., Dahlgren, R., Nanzyo, M. (1993). Chapter 3 Genesis of Volcanic Ash Soils. In S. Shoji, M. Nanzyo, R. Dahlgren (Eds.), Developments in Soil Science 21, 37–71. Elsevier. https://doi.org/https://doi.org/10.1016/S0166-2481(08)70264-2
  • 56. Sparks, D. L. (2003). Environmental soil chemistry: An overview. Environmental soil chemistry, 2, 1–42.
  • 57. Suleymanov, A., Richer-de-Forges, A. C., Saby, N. P. A., Arrouays, D., Martin, M. P., Bispo, A. (2024). National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France. Geoderma Reg, 37, e00801. https://doi.org/10.1016/j.geodrs.2024.e00801
  • 58. Sumner, M. E. (1999). Handbook of soil science. CRC press.
  • 59. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol, 39(6), 611-627. https://doi.org/10.1007/ s002540050473
  • 60. Szefer, P., Szefer, K., Glasby, G. P., Pempkowiak, J., Kaliszan, R. (1996). Heavy‐metal pollution in surficial sediments from the Southern Baltic sea off Poland. J Environ Sci Health A, 31(10), 2723–2754. https://doi.org/10.1080/10934529609376520
  • 61. Takahashi, T., Dahlgren, R., van Susteren, P. (1993). Clay mineralogy and chemistry of soils formed in volcanic materials in the xeric moisture regime of northern California. Geoderma, 59(1), 131–150. https://doi.org/10.1016/0016-7061(93)90066-T
  • 62. Tomlinson, D. L., Wilson, J. G., Harris, C. R., Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters, 33(1), 566–575. https://doi.org/10.1007/BF02414780
  • 63. Wang, Cong, Liu, S., Zhao, Q., Deng, L., Dong, S. (2012). Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicol Environ Saf, 82, 32–39. https://doi.org/10.1016/j. ecoenv.2012.05.006
  • 64. Wang, Guan, Liu, Y., Chen, J., Ren, F., Chen, Y., Ye, F., Zhang, W. (2018). Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China. Front Earth Sci, 12(1), 125–133. https://doi.org/10.1007/ s11707-017-0624-5
  • 65. Wang, Y., Zou, B., Chai, L., Lin, Z., Feng, H., Tang, Y., Tian, R., Tu, Y., Zhang, B., Zou, H. (2024). Monitoring of soil heavy metals based on hyperspectral remote sensing: A review. Earth-Science Reviews, 254, 104814. https://doi.org/10.1016/j. earscirev.2024.104814
  • 66. Weil, R., Brady, N. (2016). The nature and properties of soils, 15th edn., edited by: Fox, D. In: Pearson, Columbus.
  • 67. White, R. E. (2005). Principles and practice of soil science: the soil as a natural resource. John Wiley & Sons.
  • 68. Yongming, H., Peixuan, D., Junji, C., Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ, 355(1), 176–186. https://doi.org/10.1016/j.scitotenv.2005.02.026
  • 69. Zhu, Y., Wang, L., Zhao, X., Lian, J., Zhang, Z. (2020). Accumulation and potential sources of heavy metals in soils of the Hetao area, Inner Mongolia, China. Pedosphere, 30(2), 244–252. https://doi.org/10.1016/S1002-0160(17)60306-0
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e58f7dd-8557-4054-bd22-4fdd4da65166
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.