Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objectives of the research was to determine the causes of cracks in pipes made of high-density polyethylene (HDPE) regranulate during their storage. A visual assessment of the cracks was carried out and their fatigue nature was found. Due to the insufficient information on the composition and properties of the processed regranulate, tests were carried out on the density distribution and mass flow rate of plastic samples taken from various areas of the pipe wall. Comparative tests were performed using infrared spectrophotometry of a plastic sample taken from a pipe, commercial HDPE and commercial polypropylene (PP) by attenuated total reflection/Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetry (TG) and differencial scaning calorimetry (DSC) method. There were differences in density and flow rate depending on the distance from the outer surface of the pipe, reaching several percent. Based on the conducted spectroscopic, thermogravimetric and differential scanning calorimetry studies, none of the expected plastics contamination, mostly PP, has been found in recirculated polyethylene. Futhermore, the expected decrease in the temperature of phase transformations and the beginning of decomposition of polyethylene (PE) after recycling, compared to the original one, were visible. Possible causes of cracks were considered to be differences in the PE structure in the pipe wall and the occurrence of possible porous structures, which when storing pipes in variable load and temperature conditions could cause the propagation of microcracks.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
19--25
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Department of Technology and Polymer Processing, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Department of Technology and Polymer Processing, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Institute of Polymers, Compositesand Biomaterials, National Research Council (IPCB-CNR), P.le Fermi, 1, 80055 Portici, Italy
Bibliografia
- 1. Kijeński J., Błędzki A.K., Jeziórska R. Recovery and recycling of polymeric materials. Odzysk i recykling materiałów polimerowych. PWN; 2011.
- 2. Goliszek M., Podkościelna B., Klepka T., Sevastyanova O. Preparation, thermal, and mechanical characterization of UV-cured polymer biocomposites with lignin. Polymers. 2020; 12(5): 1159–1177.
- 3. Klepka T., Jeziorska R., Szadkowska A. Thin wall products made of modified high density polyethylene. Przemysł Chemiczny. 2015; 94(8): 1352–1355.
- 4. Czaja K. Poliolefiny. WNT; 2005.
- 5. Rauwendaal Ch., Pilar Noriega E.M. Troubleshooting the extrusion process: a systematic approach to solving plastic extrusion problems. Hanser Publishers, Hanser Gardner Publications; 2001.
- 6. Sikora J.W., Samujło B. The Effectiveness of The Single Screw Extrusion of Selected Thermoplastic Polymers. in: Świć A., Lipski J. New materials and it technologies in production engineering. Lubelskie Towarzystwo Naukowe; 2011.
- 7. Klepka T. Effectiveness of forming of polymeric special sliding layers. Polimery. 2002; 47(9): 649–653.
- 8. Garbacz T., Samujło B. Selected properties of geometric structure of the surface of cellular polyethylene products. Wybrane właściwości geometrycznej struktury powierzchni wytworów porowatych otrzymanych z polietylenu. Polimery. 2008; 53(6): 471–476.
- 9. Świetlicki M., Chocyk D., Klepka T., Prószyński A., Kwaśniewska A., Borc J., Gładyszewski G. The structure and mechanical properties of the surface layer of polypropylene polymers with talc additions. Materials. 2020; 13(3): 698–711.
- 10. Dulebova L., Garbacz T. The effect of particulate fillers on hardness of polymer composite. Advances in Science and Technology Research Journal. 2017; 11(3): 66–71.
- 11. Klepka T., Dębski H., Rydarowski H. Characteristics of high-density polyethylene and its properties simulation with use of finite element method. Polimery. 2009; 54(9): 668–672.
- 12. Klepka T. Characteristic of surface condition of special slip layers created in extrusion process. Polimery. 2004; 49(2): 123–127.
- 13. Szewczyk P. Pointed impact resistance tests on polyethylene layer pipes intended for gas transport and layed out in subsoil. Badania odporności na oddziaływania punktowe rur polietylenowych warstwowych układanych w gruncie rodzimym, przeznaczonych do przesyłania gazu. Nafta-Gaz. 2012; 68(9): 611–616.
- 14. Choi B., Chudnovsky A., Paradkar R.P., Michie W. Experimental and theoretical investigation of stress corrosion crack (SCC) growth of polyethylene pipes. Polymer Degradation and Stability. 2009; 94(5): 859–867.
- 15. Qi F.J., Huo L.X., Zhang Y.F., Jing H.Y. Study on Fracture Properties of High-Density Polyethylene (HDPE) Pipe. Advances in fracture and failure prevention. 2004; 261–263: 153–155.
- 16. Baranowski W., Werner K. Analysis of crack propagation and local strain of polyethylene pipes. Analiza rozwoju pęknięć i lokalnego odkształcenia rur z polietylenu. Polimery. 2013; 58(1): 51–58.
- 17. Zhao Y., Choi B., Chudnovsky A., Characterization of the fatique crack behawior of pipe grade polyethylene using circular notched specimens. International Journal of Fatique. 2013; (51); 26–35.
- 18. Zha S., Lan H., Fracture behavior of pre-cracked polyethylene gas pipe under foundation settlement by extended finite element method. International Journal of Pressure Vessels and Piping. 2021; 189(2): 104270–104282.
- 19. Kratochvilla T.R., Frank A., Pinter G. Determination of low crack growth behavior of polyethylene pressure pipes with cracked round bar test. Polymer Testing. 2014; 40: 299–303.
- 20. Frank A., Berger I.J., Arbeiter F., Pinter G. Characterization of crack initiation and slow crack growth resistance of PE100 and PE 100-RC pipe grades with cyclic cracked round bar (CRB) tests. Proceedings of the 17th Plastic Pipes Conference PPXVII September 22–24, 2014, Chicago, Illinois, USA.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e556649-6e0e-4402-bfb7-4778ae4232f0