PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The possibility of greenhouse gas emissions reduction from the dairy cattle farms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Możliwość redukcji emisji gazów cieplarnianych z ferm bydła mlecznego
Języki publikacji
EN
Abstrakty
EN
Dairy cattle have a significant share in greenhouse gas (GHG) emissions. Therefore, due to the growing demand for milk and milk products, it is worth looking for solutions to effectively reduce the environmental impact of dairy farming. The article reviews the literature on the reduction of greenhouse gas emissions from dairy farms through dietary interventions. Significant reduction in greenhouse gas emissions from dairy farms can be achieved by optimizing dairy cattle and the use of various feed additives. Silvo-pastoralism systems are also important for their ecosystem services, including climate change mitigation.
PL
Bydło mleczne ma znaczący udział w emisji gazów cieplarnianych (GHG). Dlatego też, w związku z rosnącym popytem na mleko i jego przetwory, warto poszukiwać rozwiązań pozwalających na skuteczne ograniczenie wpływu hodowli bydła mlecznego na środowisko. W artykule dokonano przeglądu literatury dotyczącej możliwości redukcji emisji gazów cieplarnianych z gospodarstw mlecznych. Znaczne zmniejszenie emisji gazów cieplarnianych z gospodarstw utrzymujących bydło mleczne można osiągnąć poprzez optymalizację żywienia i stosowanie różnych dodatków paszowych. Systemy sylvo- pastoralne są również ważne ze względu na ich usługi ekosystemowe, w tym łagodzenie zmian klimatu.
Twórcy
  • Department of Animals Production and Poultry Products Evaluation, University of Rzeszów
autor
  • Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin,
  • Department of Animals Production and Poultry Products Evaluation, University of Rzeszów
  • Department of Animals Production and Poultry Products Evaluation, University of Rzeszów
Bibliografia
  • 1. Aguerre MJ., Wattiaux MA., Powell JM., Broderick GA., Arndt C. 2011. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J Dairy Sci. 94. 3081-3093. doi:10.3168/jds.2010-4011.
  • 2. Appuhamy JA., France J., Kebreab E. 2016. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob Change Biol. 22. 3039-3056. doi:10.1111/gcb.13339.
  • 3. Bayat AR., Tapio I., Vilkki J., Shingfield KJ., Leskinen H. 2018. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J Dairy Sci 101(2). 1136-1151. https://doi.org/10.3168/jds.2017-13545.
  • 4. Bellarby J., Tirado R., Leip A., Weiss F., Lesschen JP., Smith P. 2013. Livestock greenhouse gas emissions and mitigation potential in Europe. Glob Chang Biol. 19(1). 3-18. https://doi.org/10.1111/j.1365-2486.2012.02786.x.
  • 5. Benchaar C., Hassanat F., Gervais R., Chouinard PY., Petit HV., Massé DI. 2014. Methane production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn silage- or barley silage-based diets. J Dairy Sci. 97. 961-974. https://doi.org/10.3168/jds.2013-7122.
  • 6. Bodirsky BL., Rolinski S., Biewald A., Weindl I., Popp A., Lotze-Campen H. 2015. Global Food Demand Scenarios for the 21st Century. Plos One. 10(11). e0139201. https://doi.org/10.1371/journal.pone.0139201.
  • 7. Bougouin A., Leytem A., Dijkstra J., Dungan RS., Kebreab E. 2016. Nutritional and environmental effects on Ammonia emissions from dairy cattle housing: A Meta-Analysis. J Environ Qual. 45(4). 1123-1132. https://doi.org/10.2134/jeq2015.07.0389.
  • 8. Brask M., Lund P., Weisbjerg MR., Hellwing ALF., Poulsen M., Larsen MK., Hvelplund T. 2013. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows. J Dairy Sci. 96. 2356-2365. https://doi.org/10.3168/jds.2011-5239.
  • 9. Caro D., Kebreab E., Mitloehner FM. 2016. Mitigation of enteric methane emission from global livestock systems through nutrition strategies. Clim Change. 137(3-4). 467-480. https://doi.org/10.1007/s10584-016-1686-1.
  • 10. Chagas J.C., Ramin M., Exposito RG., Smidt H., Krizsan SJ. 2021. Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions. Animals. 11. 2597.
  • 11. Davies J., Herrera P., Ruiz-Mirazo J., Mohamed-Katerere J., Hannam I., Nuesiri E. 2016. Improving governance of pastoral lands. Implementing the Voluntary Guidelines on the Responsible Governance of Tenure of Land, Fisheries and Forests in the Context of National Food Security. Food And Agriculture Organization of The United Nations. Rome.
  • 12. Dijkstra J., van Zijderveld SM., Apajalahti JA., Bannink A., Gerrits WJJ., Newbold JR., Perdok HB., Berends H. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim Feed Sci Tech. 166-167. 590-595.
  • 13. Directive (EU) 2016/2284 of The European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC.
  • 14. Doltra J. Villar A. Moros R. Salcedo G. Hutchings NJ., Kristensen IS. 2018. Forage management to improve on-farm feed production, nitrogen fluxes and greenhouse gas emissions from dairy systems in a wet temperate region. Agric Syst. 160. 70-78. https://doi.org/10.1016/j.agsy.2017.11.004.
  • 15. Durmic Z. Moate PJ. Eckard R. Revell DK. Williams R. Vercoe PE. 2014. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J Sci Food Agric. 94(6). 1191-1196. https://doi.org/10.1002/jsfa.6396.
  • 18. FAO (2018) The future of food and agriculture – Alternative pathways to 2050. Rome.
  • 17. FAO and GDP. (2018) Climate change and the global dairy cattle sector – The role of the dairy sector in a low-carbon future Rome.
  • 18. Günal M., Pinski B., Abu Ghazaleh AA. 2017. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Ital. J Anim Sci. 16(3). 500-506. https://doi.org/10.1080/1828051X.2017.1291283.
  • 19. Haque MN. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Tech. 60. 15. https://doi.org/10.1186/s40781-018-0175-7.
  • 20. Haque MN., Cornou C., Madson J. 2014. Estimation of methane emission using the CO2 method from dairy cows fed concentrate with different carbohydrate compositions in automatic milking system. Livest Sci. 164. 57-66. https://doi.org/10.1016/j.livsci.2014.03.004.
  • 21. Hellwing LF., Weisbjerg MR., Brask M., Alstrup L., Johansen M., Hymøller L., Larsen MK., Lund P. 2016. Prediction of the methane conversion factor (Ym) for dairy cows on the basis of national farm data. Anim Prod Sci. 56(3). 535-540. https://doi.org/10.1071/AN15520.
  • 22. Hristov AN., Oh J., Giallongo F., Frederick TW., Harper MT., Weeks HL., Branco AF., Moate PJ., Deighton MH., Williams SRO., Kindermann M., Duval S. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc Natl Acad Sci. 112(34). 10663-10668. https://doi.org/10.1073/pnas.1504124112.
  • 23. Humer E., Petri RM., Aschenbach JR., Bradford BJ., Penner GB., Tafaj M., Südekum K-H., Zebeli Q. 2018. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J Dairy Sci. 101(2). 872-888. https://doi.org/10.3168/jds.2017-13191.
  • 24. IPCC Report. Chapter 5. Food security. www.ipcc.ch/srccl-report-download-page/ (Accessed 24 February 2023 ).
  • 25. Jayanegara A., Goel G., Makkar HPS., Becker K. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim Feed Sci Technol. 209. 60-68. https://doi.org/10.1016/j.anifeedsci.2015.08.002.
  • 26. Jenet A., Buono N., Di Lello S., Gomarasca M., Heine C., Mason S., Nori M., Saavedra R., Van Troos K. 2016. The path to greener pastures. Pastoralism, the backbone of the world’s drylands. Vétérinaires Sans Frontières International (VSF-International). Brussels. Belgium.
  • 27. Knapp JR., Laur GL., Vadas PA., Weiss WP., Tricarico JM. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97. 3231-3261.
  • 28. Leip A., Billen G., Garnier J., Grizzetti B., Lassaletta L., Reis S., Simpson D., Sutton MA., De Vries W., Weiss F. 2015. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, landuse, water eutrophication and biodiversity. Environ Res Lett. 10. 115004. https://doi.org/10.1088/1748-9326/10/11/115004.
  • 29. Little SM., Benchaar C., Janzen HH., Kröbel R., McGeough EJ., Beauchemin KA. 2017. Demonstrating the Effect of Forage Source on the Carbon Footprint of a Canadian Dairy Farm Using Whole-Systems Analysis and the Holos Model: Alfalfa Silage vs. Corn Silage. Climate. 5(4). 87. https://doi.org/10.3390/cli5040087.
  • 30. Liu Z., Liu Y., Murphy JP., Maghirang R. 2017. Ammonia and Methane Emission Factors from Cattle Operations Expressed as Losses of Dietary Nutrients or Energy. Agriculture. 7. 16. https://doi.org/10.3390/agriculture7030016.
  • 31. Liu Z., Powers W., Oldick B., Davidson J., Meyer D. 2012. Gas emissions from dairy cows fed typical diets of Midwest, South, and West Regions of the United States. J Environ Qual. 41. 1228-1237. https://doi.org/10.2134/jeq2011.0435.
  • 32. Machado L., Magnusson M., Paul NA., de Nys R., Tomkins N. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One. 9. e85289. https://doi.org/10.1371/journal.pone.0085289.
  • 33. McGahey D., Davies J., Hagelberg N., Ouedraogo R. 2014. Pastoralism and the Green Economy – a natural nexus? Nairobi: IUCN and UNEP. x + 58p.
  • 34. Mikuła R., Pszczoła M., Rzewuska K., Mucha S., Nowak W., Strabel T. 2022. The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage. Animals. 12. 50.
  • 35. Moate P., Williams S., Grainger C., Hannah M., Ponnampalam E., Eckard R. 2011. Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim Feed Sci Technol. 166. 254-264. https://doi.org/10.1016/j.anifeedsci.2011.04.069.
  • 36. Moraes LE., Fadel JG., Castillo AR., Casper DP., Tricario JM., Kebreab E. 2015. Modeling the trade-off between diet costs and methane emissions: A goal programming approach. J Dairy Sci. 98(8). 5557-5571. https://doi.org/10.3168/jds.2014-9138.
  • 37. Muñoz C., Villalobos R., Peralta AMT., Morales R., Urrutia NL., Ungerfeld EM. 2021. Long-Term and Carryover Effects of Supplementation with Whole Oilseeds on Methane Emission, Milk Production and Milk Fatty Acid Profile of Grazing Dairy Cows. Animals. 11. 2978. https://doi.org/10.3390/ani11102978.
  • 38. Nieto MI., Barrantes O., Privitello L., Reine L. 2018. Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina. Sustainability. 10. 4228. https://doi.org/10.3390/su10114228.
  • 39. Noiret B. 2016. Food Security in a Changing Climate: A Plea for Ambitious Action and Inclusive Development. Development. 59. 237-242. https://doi.org/10.1057/s41301-017-0092-y.
  • 40. Oskoueian E., Abdullah N., Oskoueian A. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int. 8. https://doi.org/10.1155/2013/349129.
  • 41. Patra AK. 2013. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest Sci. 155. 244-254. https://doi.org/10.1016/j.livsci.2013.05.023.
  • 42. Patra AK. 2014. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest Sci. 162. 97-103. https://doi.org/10.1016/j.livsci.2014.01.007.
  • 43. Patra AK. Yu Z. 2014. Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl Microbiol Biotechnol. 98. 897-905. https://doi.org/10.1007/s00253-013-4930-x.
  • 44. Pereira J., Trindade H. 2015. Short communication: Impact of the intensity of milk production on ammonia and greenhouse gas emissions in Portuguese cattle farms. Span J Agric Res. 13(4). e06SC05. https://doi.org/10.5424/sjar/2015134-8176.
  • 45. Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013. (accessed 25 April 2023).
  • 46. Roque BM., Brooke CG., Ladau J., Polley T., Marsh LJ., Najafi N., Pandey P., Singh L., Kinley R., Salwen JK., Eloe-Fadrosh E., Kebreab E., Hess M. 2019. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome. 1.3. https://doi.org/10.1186/s42523-019-0004-4.
  • 47. Sarteel M. (eds.) 2016. Resource efficiency in practice – closing mineral cycles. Revised final report.
  • 48. Subharat S., Shu D., Zheng T., Buddle BM., Janssen PH., Luo D., Wedlock DN. 2015. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen. Vet Immunol Immunopathol. 164(3-4). 201-207. https://doi.org/10.1016/j.vetimm.2015.02.008.
  • 49. www.tradedatamonitor.com (Accessed 5 May 2023)
  • 50. Van Middelaar CE., Dijkstra J., Berentsen PB., De Boer IJ. 2014. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming. J Dairy Sci. 97(4). 2427-2439. https://doi.org/10.3168/jds.2013-7648.
  • 51. Vasconcelos K., Farinha M., Bernardo L., Lampert VN., Gianezini M., da Costa JS., Filho AS., Genro TCM., Ruviaro CF. 2018. Livestock-derived greenhouse gas emissions in a diversified grazing system in the endangered Pampa biome, Southern Brazil. Land Use Policy. 75. 442-448. https://doi.org/10.1016/j.landusepol.2018.03.056.
  • 52. Voglmeier K., Six J., Jocher M., Ammann C. 2019. Grazing-related nitrous oxide emissions: from patch scale to field scale. Biogeosciences. 16. 1685-1703. https://doi.org/10.5194/bg-16-1685-2019.
  • 53. Watt LJ., Clark CEF., Krebs GL., Petzel CE., Nielsen S., Utsumi SA. 2015. Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system. J Dairy Sci. 98. 7248-7263.
  • 54. Wedlock DN., Janssen PH., Leahy SC., Shu D., Buddle BM. 2013. Progress in the development of vaccines against rumen methanogens. Animal. 7(2). 244-252. https://doi.org/10.1017/S1751731113000682.
  • 55. Williams SRO., Fisher PD., Berrisford T., Moate J., Reynard K. 2014. Reducing methane on-farm by feeding diets high in fat may not always reduce life cycle greenhouse gas emissions. Int J Life Cycle Ass. 19(1). 69-78. https://doi.org/10.1007/s11367-013-0619-8.
  • 56. www.statista.com (accessed 26 April 2023).
  • 57. Zhan J., Liu M., Su X., Zhan K., Zhang C., Zhao G. 2017. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. Asian-Australas J Anim Sci. 30(10). 1416-1424. https://doi.org/10.5713/ajas.16.0579.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e55460f-214e-4f44-ae01-e537a362ed69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.