Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to numerical analysis of the roof truss subjected to upward wind loading and braced at the tensioned top chord. Linear buckling analysis was performed for the beam and shell model of the structure. As a result, the influence of rotational connection stiffness between the brace and the top chord on truss stability was noted. A bi-axial strength testing machine was used to conduct the experimental tests of the rotational connection stiffness between selected steel profiles. The results in the form of measured structural displacements and rotations were presented. The static nonlinear analysis results obtained for the shell model of the structural connection were compared to the results obtained on the experimental set-up.
Rocznik
Tom
Strony
art. no. e151952
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Structural Mechanics, Poland
Bibliografia
- [1] PN-EN 1993-1-1, Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings, 2005.
- [2] A. Biegus, “Calculation of lateral bracing for cantilever and multispan girdersc,” Arch. Civ. Mech. Eng., vol. 13, pp. 99–103, 2013, doi: 10.1016/j.acme.2012.11.001.
- [3] Sz. Pałkowski and M. Piątkowski, “About calculations of roof cross braces,” Eng. Constr., vol. 4, pp. 210–213, 2014.
- [4] A. Biegus and D. Czepiżak, “Generalized model of imperfection forces for design of transverse roof bracings and purlins,” Arch. Civ. Mech. Eng., vol. 18, pp. 267–279, 2018, doi: 10.1016/j.acme.2017.07.002.
- [5] D. Czepiżak and A. Biegus, “Refined calculation of lateral bracing system due to global geometrical imperfections,” J. Constr. Steel. Res., vol. 119, pp. 30–38, 2016, doi: 10.1016/j.jcsr.2015.12.007.
- [6] M. Krajewski, “Analysis of the influence of geometrical imperfections on the equivalent load stabilizing roof truss with lateral bracing system,” J. Theor. Appl. Mech., vol. 62, no. 2, pp. 231–240, 2024, doi: 10.15632/jtam-pl/185163.
- [7] E. Hotała, P. Hotała, and M. Zambrowicz, “Safety of lattice purlins under wind or snow loads,” in Proc. LIII Scientific Conference by Committee of Civil and Water Engineering of the Polish Academy of Sciences, Krynica, 2007, vol. 2, pp. 233–240.
- [8] J. Jankowska-Sandberg, “The influence of the lateral brace stiffness located at the compressed chord on the truss buckling loads,” in Proc. Scientific Conference by Committee of Civil and Water Engineering of the Polish Academy of Sciences, vol. 2, Krynica, 2004, pp. 221–228.
- [9] J. Jankowska-Sandberg, Selected stability problems of arch and truss girders, Koszalin, Poland: Koszalin University of Technology publishing house, 2013.
- [10] P. Iwicki, “Stability of trusses with linear elastic side-supports,” Thin Walled Struct., vol. 45, pp. 849–854, 2007, doi: 10.1016/j.tws.2007.08.005.
- [11] P. Iwicki, “Sensitivity analysis of critical forces of trusses with side bracing,” J. Constr. Steel. Res., vol. 66, pp. 923–930, 2010, doi: 10.1016/j.jcsr.2010.02.004.
- [12] J. Jankowska-Sandberg and J. Kołodziej, “Experimental study of steel truss lateral torsional buckling,” Eng. Struct., vol. 46, pp. 165–172, 2013, doi: 10.1016/j.engstruct.2012.07.033.
- [13] M. Piątkowski, “Experimental research on load of transversal roof bracing due to geometrical imperfections of truss,” Eng. Struct., vol. 242, p. 11255, 2021, doi: 10.1016/j.engstruct.2021.112558.
- [14] M. Krajewski, “Stability of trusses with elastic side supports,” PhD. thesis, Gdansk University of Technology, Poland, 2021.
- [15] M. Krajewski and P. Iwicki, “Stability of an imperfect truss loaded by wind,” Eng. Trans., vol. 64, no. 4, pp. 509–516, 2016, doi: 10.24423/engtrans.729.2016.
- [16] M. Smak M and B. Straka, “Geometrical and structural imperfections of steel member systems,” Procedia Eng., vol. 40, pp. 434–439, 2012, doi: 10.1016/j.proeng.2012.07.121.
- [17] A. Biegus, “Trapezoidal sheet as a bracing preventing flat trusses from out-of-plane buckling,” Arch. Civ. Mech. Eng., vol. 15, no. 3, pp. 735–741, 2015, doi: 10.1016/j.acme.2014.08.007.
- [18] M. Gajdzicki and J. Goczek, “Numerical simulation to determine torsional restraint of cold-formed Z purlin,” International Conference on Metal Structures, Wrocław, 2011, pp. 424–433.
- [19] Femap with NX Nastran, Instruction manual, Siemens Product Lifecycle Management Software INC., 2009
- [20] R.H. Macneal, “A simple quadrilateral shell element,” Comput. Struct., vol. 8, pp. 175–183, 1978.
- [21] Zwick/Roell BIAX Z20 strength testing machine, Instruction manual. [Online]. Available: www.zwickroell.com
- [22] Sick inclinometer, type TMM88A-PKC090, Instruction manual. [Online]. Available: www.sick.com/1073799
- [23] PMX measurement amplifier, type 1-PX455, Instruction Manual. [Online]. Available: www.hbm.com/de/2981/pmx-modular-measuring-amplifier-system-for-the-iot
- [24] QuantumX measurement amplifier, type MX840B, Instruction manual. [Online]. Available: www.hbm.com/quantumx
- [25] G. Rakowski and Z. Kacprzyk, Finite element Method in structural mechanics. Warsaw, Poland: Warsaw University of Technology publishing house, 1993.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e53e628-3aee-426c-ac24-227400ef3cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.