PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the steam flow past the turbine blade stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The steam flow past a last stage (the eleventh stage) of the high pressure part of the TK120 steam turbine was investigated using computational fluid dynamics (CFD). The simulations are performed using the unsteady compressible Navier-Stokes equations. Viscous steam flow has been analyzed using the Spalart-Allmaras turbulence model. The paper presents distributions of instantaneous flow parameters around turbine blades as well as instantaneous aerodynamic blade loads. Flow parameters such as: velocity and static pressure are presented as contour maps whereas aerodynamic loads, axial and circumferential, are given as functions of time. Theoretical power of the examined turbine stage is 4.11 MW. Based on the numerical investigations the power of the analyzed stage is evaluated to be 3.5 MW. All presented in this paper results have been performed using the ANSYS Fluent solver.
Rocznik
Strony
102--110
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw, Poland
Bibliografia
  • [1] CHRZANOWSKI W., 1929, Modern steam turbines, Warszawa, (in Polish).
  • [2] ŚWIRYDCZUK J., 2013, Wake-blade interaction in steam turbine stages, Polish Maritime Research, 20/2(78), 30-40.
  • [3] NIKIEL T., 1989, Steam turbines, Wydawnictwa Naukowo-Techniczne, Warszawa, (in Polish).
  • [4] BASAVARAJ H.N., SHASHISHEKAR K.S., 2013, Reprofiling and optimization of a 50% reaction turbine blade profile for HP steam path, International Journal of Advanced Scientific and Technical Research, 3/4, 137-153.
  • [5] ŚWIRYDCZUK, J., 2006, CFD modelling of turbine stage stator/rotor interaction, TASK Quarterly, 10/2, 113-124.
  • [6] SEGAWA K., SHIKANO Y., TSUBOUCHI K., SHIBASHITA N., 2002, Development of highly loaded rotor blade for steam turbines, Japan Society Mechanical Engineering (JSME) International Journal Series B, 45/4, 881-890.
  • [7] CHMIELNIAK T.J., 1993, Fluid-flow machines, Wydawnictwo Politechniki Śląskiej, Gliwice, (in Polish).
  • [8] CAMPOS-AMEZCUA A., MAZUR Z., GALLEGOS-MUNOZ A., ROMERO-COLMENERO A., RIESCOAVILA J.M., MEDINA-FLORES J.M., 2008, Numerical study of erosion due to solid particles in steam turbine blades, Numerical Heat Transfer, Part A, 53, 667-684.
  • [9] RUSEK P., WANTUCH E., ZAGÓRSKI K., 2013, The problem of energy-consuming processes in the planning of modern manufacturing technologies, Journal of Machine Engineering, 13/4, 68-76.
  • [10] SAKI N., HARADA T., IMAI Y., 2006, Numerical study of partial admission stages in steam turbine (Efficiency improvement by optimizing admission arc position), JSME International Journal Series B Fluids and Thermal Engineering, 49/2, 212-217.
  • [11] DEMBIŃSKI K., 2013, Computations of distribution of steam parameters in the high-pressure part of the TK-120 turbine, Technical report, Katowice.
  • [12] PERYCZ S., 1992, Steam and gas turbines, Wydawnictwo Polskiej Akademii Nauk, (in Polish).
  • [13] KIM H., LEE H., KIM D., BOSE S.T., PHILIPS D.A., 2014, Prediction of unsteady loading on a steam turbine blade, Center for Turbulence Research, Proceedings of the Summer Program, 479-487.
  • [14] PROŚ D., ZABORSKI S., 2010, Analysis of the wire electrical discharge machinability of roots of steam turbine blades, Journal of Machine Engineering, 10/1, 70-77.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e4f6213-9d46-4ee6-b823-1ab974cabd29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.