PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic moduli of carbon nanotubes with new geometry based on FEM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the elastic moduli of elliptic single walled carbon nanotubes (ESWCNTs) are described. A three-dimensional finite element (FE) model for such carbon nanotubes is proposed. The covalent bonds are simulated by beam elements in the FE model. The elastic moduli of beam elements are ascertained from a linkage between molecular and continuum mechanics. The deformations of the FE model are subsequently used to predict the elastic moduli of ESWCNTs. In order to demonstrate the FE performance, the influence of length, chirality, diameter and cross sectional aspect ratios on the elastic moduli (Young’s modulus and shear modulus) of ESWCNTs is investigated. It is found that the cross sectional aspect ratio of ESWCNTs significantly affects the elastic moduli. With increasing cross sectional aspect ratio, the Young’s modulus and shear modulus decrease. As a result, every change in geometry operates as a defect and decreases the elastic moduli. With increasing the length, Young’s modulus increases and the shear modulus decreases.
Rocznik
Strony
235--245
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Semnan University, Faculty of Mechanical Engineering, Semnan, Iran
autor
  • Young Researchers Club, Semnan branch, Islamic Azad University, Semnan, Iran
autor
  • Semnan University, Faculty of Mechanical Engineering, Semnan, Iran
Bibliografia
  • 1. Chang T.C., Gao H.J., 2003, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, Journal of the Mechanics and Physics of Solids, 51, 1059
  • 2. Fereidoon A., Rajabpour M., Hemmatian H., 2012a, Elastic moduli of elliptic carbon nanotubes based on FEM, Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino, Italy, June 18-20, Paper No. 101
  • 3. Fereidoon A., Rajabpour M., Hemmatian H., 2012b, Fracture analysis of carbon nanotube composites using global-local models, Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino, Italy, June 18-20, Paper No. 461
  • 4. Fereidoon A., Rajabpour M., Hemmatian H., 2013, Fracture analysis of epoxy/SWCNT nanocomposite based on global-local finite element model, Composites Part B: Engineering, 54, 400-408
  • 5. Giannopoulos G., Kakavas P., Anifantis N., 2008, Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach, Computational Materials Science, 41, 561-569
  • 6. Hemmatian H., Fereidoon A., Rajabpour M., 2011, Investigation of crack resistance in single walled carbon nanotube reinforced polymer composites based on FEM, 3rd International Conference on Ultrafine Grained and Nanostructured Materials, University College of Engineering, University of Tehran, Tehran, Iran, November 2-3
  • 7. Jalalahmadi B., Naghdabadi R., 2007, Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness, Journal of Physics, 61, 497-502
  • 8. Kalamkarov A.L., Georgiades A.V., Rokkam S.K., Veedu V.P., Ghasemi-Nejhad M.N., 2006, Analytical and numerical techniques to predict carbon nanotubes properties, International Journal of Solids and Structures, 43, 6832-6854
  • 9. Lau K.T., Chipara M., Ling H.Y., Hui D., 2004, On the effective elastic moduli of carbon nanotubes for nanocomposite structures, Composites Part B: Engineering, 35, 2, 95
  • 10. Lau K.T., Hui D., 2002a, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon, 40, 1605-1606
  • 11. Lau K.T., Hui D., 2002b, The revolutionary creation of new advanced materials carbon nanotube composites, Composites Part B: Engineering, 33, 263-277
  • 12. Li C., Chou T.W., 2003a, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, 40, 2487
  • 13. Li C., Chou T.W., 2003b, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, 63, 1517
  • 14. Li C., Chou T.W., 2004,Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach, Mechanics of Materials, 36, 11, 1047
  • 15. Lu J.P., 1997, Elastic properties of carbon nanotubes and nanoropes, Physical Review Letters, 79, 7, 1297
  • 16. Meo M., Rossi M., 2006, Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling, Composites Science and Technology, 66, 11/12, 1597
  • 17. Meo M., Rossi M., 2007, A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes, Materials Science and Engineering A, 454/455, 170-177
  • 18. Odegard G.M., Gates T.S., Nicholson L.M., Wise K.E., 2001, Equivalent-continuum modeling of nano-structured materials, NASA/TM-2001-210863, NASA Langley Research Center, Hampton, VA
  • 19. Odegard G.M., Gates T.S., Nicholson L.M., Wise K.E., 2002a, Equivalent continuum modeling of nano-structured materials, Composites Science and Technology, 62, 1869
  • 20. Odegard G.M., Gates T.S., Nicholson L.M., Wise K.E., 2002b, Equivalent-continuum modeling with application to carbon nanotubes, NASA/TM-2002-211454, NASA Langley Research Center, Hampton, VA
  • 21. Parl C., Ounaies Z., Watson K.A., Pawlowski K., Lowther S.E., Connell J.W., Siochi E.J., Harrison J.S., St. Clair T.L., 2002, Polymer-single wall carbon nanotube composites for potential spacecraft applications, ICASE Report No. 2002-36, NASA Langley Research Center, Hampton, VA
  • 22. Qian D., Wagner G.J., Liu W.K., Yu M.F., Ruoff R.S., 2002, Mechanics of carbon nanotubes, Applied Mechanics Reviews, 55, 6, 495
  • 23. Rajabpour M., Hemmatian H., Fereidoon A., 2012, Analysis of the effect of chirality on stress intensity factor of epoxy/SWCNT based onmulti-scale method, 15th Iranian Physical Chemistry Conference, University of Tehran, Tehran, September 3-6
  • 24. Sanchez-Portal D., Artacho E., Soler J.M., 1999, Ab-initio structural, elastic, and vibrational properties of carbon nanotubes, Physical Review Letters, 59, 12678
  • 25. Shokrieh M., Rafiee R., 2010, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nano-scale continuum mechanics approach, Materials and Design, 31, 2, 790-795
  • 26. Smith J.G., Watson K.A., Thompson C.M., Connell J.W., 2002, Carbon nanotube/space durable polymer nanocomposite films for electrostatic charge dissipation, ICASE Report No. 2002-34, NASA Langley Research Center, Hampton, VA
  • 27. Thostenson E.T., Li C., Chou T.W., 2005, Nanocomposites in context, Composites Science and Technology, 65, 3/4, 4916
  • 28. Thostenson E.T., Ren Z.,Chou T.W., 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61, 1899-1912
  • 29. Tserpes K., Papanikos P., 2005, Finite Element modeling of single-walled carbon nanotubes, Composites Part B: Engineering, 36, 468-477
  • 30. Wang X., Wang X.Y., Xiao J., 2005, A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformation, Composite Structures, 69, 315
  • 31. Wang X., Zhang Y.C., Xia X.H., Huang C.H., 2004, Effective bending modulus of carbon nanotubes with rippling deformation, International Journal of Solids and Structures, 41, 6429
  • 32. Yakobson B.I., Brabec C.J., Bernholc J., 1996, Nanomechanics of carbon tubes: instabilities beyond linear range, Physical Review Letters, 76, 2511
  • 33. Yu M.F., 2004, Fundamental mechanical properties of carbonnanotubes: current understanding and the related experimental studies, Journal of Engineering Materials and Technology, 126, 3, 271
  • 34. Zaeri M.M., Ziaei-Rad S.,Vahedi A., Karimzadeh F., 2010, Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper, Carbon, 48, 3916-3930
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e4e4301-564b-4e7b-9597-bf4ccc228ecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.