PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of open-porous materials for high-temperature fuel cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microstructure is one of the major factors influencing material properties. It is especially important for open-porous materials dedicated to catalytic applications, where fraction of pores, their size distribution and specific surface influence the diffusion of reactants and the kinetics of catalytic reactions. In these studies the numerical models of the microstructure of open-porous electrodes for molten carbonate fuel cell (MCFC) are presented. The models presented here simulate fabrication routes for real materials, including mixing of powders, tape casting and sintering processes. The substrate powders are represented by spheres with defined size distribution. Mixing and compaction of powders with polymeric binder is simulated by a granular model implemented in LAMMPS code. In the next step the polymeric phase represented by fine particles and larger porogen addition is removed to form pores. The sintering process is simulated by geometry smoothing, which results in sphere aggregation. The models presented here were compared with micro computed tomography (µCT) 3D images of real MCFC materials. Quantitative analysis of µCT images was performed and it was demonstrated that algorithms used in these studies make it possible to design materials with the desired porous microstructure.
Rocznik
Strony
178--182
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] J. Milewski, G. Discepoli, U. Desideri, Modeling the performance of MCFC for various fuel and oxidant compositions, International Journal of Hydrogen Energy 39 (22) (2014) 11713–11721.
  • [2] J. Milewski, Solid oxide electrolysis cell CO–methanation supported by molten carbonate fuel cell – a concept, Journal of Power Technologies 96 (1) (2016) 8–14.
  • [3] R. Roshandel, M. Astaneh, F. Golzar, Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases, Frontiers in Energy 9 (1) (2015) 106–114.
  • [4] J. R. Selman, Molten-salt fuel cells – technical and economic challenges, Journal of Power Sources 160 (2) (2006) 852–857.
  • [5] E. Antolini, The stability of molten carbonate fuel cell electrodes: a review of recent improvements, Applied energy 88 (12) (2011) 4274–4293.
  • [6] A. Kulkarni, S. Giddey, Materials issues and recent developments in molten carbonate fuel cells, Journal of Solid State Electrochemistry 16 (10) (2012) 3123–3146.
  • [7] P. Heidebrecht, K. Sundmacher, Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics, Chemical Engineering Science 58 (3–6) (2003) 1029-1036, 17th International Symposium of Chemical Reaction Engineering (IS {CRE} 17).
  • [8] K. Czelej, K. Cwieka, T. Wejrzanowski, P. Spiewak, K. J. Kurzydlowski, Decomposition of activated CO2 species on Ni(110): Role of surface diffusion in the reaction mechanism, Catalysis Communications 74 (2016) 65–70.
  • [9] T.Wejrzanowski, J. Skibinski, J. Szumbarski, K. J. Kurzydlowski, Structure of foams modeled by Laguerre–Voronoi tessellations, Computational Materials Science 67 (2013) 216–221.
  • [10] J. Skibinski, K. Cwieka, T. Kowalkowski, B. Wysocki, T. Wejrzanowski, K. J. Kurzydlowski, The influence of pore size variation on the pressure drop in open–cell foams, Materials & Design 87 (2015) 650–655.
  • [11] C. R. A. Catlow, G. D. Price, Computer modelling of solid–state inorganic materials, Nature 347 (6290) (1990) 243–248.
  • [12] C. R. A. Catlow, B. Smit, R. van Santen, Computer modelling of microporous materials, Academic Press, 2004.
  • [13] T. Wejrzanowski, W. Spychalski, K. Rozniatowski, K. Kurzydlowski, Image based analysis of complex microstructures of engineering materials, International Journal of Applied Mathematics and Computer Science 18 (1) (2008) 33–39.
  • [14] T. Wejrzanowski, M. Lewandowska, K. J. Kurzydlowski, Stereology of nano–materials, Image Analysis and Stereology 29 (2010) 1–13.
  • [15] T. Wejrzanowski, J. Skibinski, L. Madej, K. J. Kurzydlowski, Modeling structures of cellular materials for application at various length – scales, Computer Methods in Materials Science 13 (4) (2013) 493–500.
  • [16] R. Moreno-Atanasio, R. A. Williams, X. Jia, Combining x–ray microtomography with computer simulation for analysis of granular and porous materials, Particuology 8 (2) (2010) 81-99.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e4c5258-0cf0-47c8-b5e7-ce2eca3d611b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.