Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The four-layer stack accumulative roll bonding (ARB) process using AA1050, AA5052 and AA6061 alloy sheets is performed up to 2 cycles without a lubricant at room temperature. The sample fabricated by the ARB is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 alloys are alternately stacked to each other. The changes of microstructure and mechanical properties with annealing for the-ARBed aluminum sheet are investigated in detail. The as-ARBed sheet shows an ultrafine grained structure, however the grain diameter is some different depending on the kind of aluminum alloys. The complex aluminum alloy still shows ultrafine structure up to annealing temperature of 250℃, but above 275℃ it exhibits a heterogeneous structure containing both the ultrafine grains and the coarse grains due to an occurrence of discontinuous recrystallization. This change in microstructure with annealing also has an effect on the change of the mechanical properties of the sample. Especially, the specimen annealed at 300℃ represents abnormal values for the strength coefficient K and work hardening exponent n value.
Wydawca
Czasopismo
Rocznik
Tom
Strony
765--770
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
- MOKPO National University, Advanced Materials Science And Engineering, Muan-Gun, Jeonnam 58554, Korea
autor
- MOKPO National University, Advanced Materials Science And Engineering, Muan-Gun, Jeonnam 58554, Korea
Bibliografia
- [1] L. Ding, Y. Weng, S. Wu, R. E. Sansers, Z. Jia, Q. Liu, Mater. Sci. Eng. A651, 991 (2016).
- [2] X. Fan, Z. He, W. Zhou, S. Yuan, J. Mater. Process. Tech. 228, 179 (2016).
- [3] J. Y. Hwang, S. H. Lee, Korean J. Mater. Res. 29 (6), 392 (2019).
- [4] S. H. Jo, S. H. Lee, Korean J. Mater. Res. 30 (5), 246 (2020).
- [5] S. S. Na, Y. H. Kim, H. T. Son, S. H. Lee, Korean J. Mater. Res. 30 (10), 542 (2020).
- [6] M. Jeong, J. Lee, J. H. Han, Korean J. Mater. Res. 29, 10 (2019).
- [7] S. J. Oh, S. H. Lee, Korean J. Mater. Res. 28 (9), 534 (2018).
- [8] E. H. Kim, H. H. Cho, K. H. Song, Korean J. Mater. Res. 27, 276 (2017).
- [9] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scrip. Mater. 39, 1221 (1998).
- [10] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47, 579 (1999).
- [11] S. H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
- [12] S. H. Lee, H. Utsunomiya, T. Sakai, Mater. Trans. 45, 2177 (2004).
- [13] S. H. Lee, J. Kor. Inst. Met. & Mater. 43 (12), 786 (2005).
- [14] S. H. Lee, C. H. Lee, S. Z. Han, C. Y. Lim, J. Nanosci. and Nanotech. 6, 3661 (2006).
- [15] S. H. Lee, C. H. Lee, S. J. Yoon, S. Z. Han, C. Y. Lim, J. Nanosci. and Nanotech. 7, 3872 (2007).
- [16] N. Takata, S. H. Lee, C. Y. Lim, S. S. Kim, N. Tsuji, J. Nanosci. and Nanotech. 7, 3985 (2007).
- [17] S. H. Lee, H. W. Kim, C. Y. Lim, J. Nanosci. and Nanotech. 10, 3389 (2010).
- [18] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban, Composites Sci. and Tech. 68, 2003 (2008).
- [19] Ming-Che Chen, Chih-Chun Hsieh, Weite Wu, Met. Mater. Int. 13 (3), 201 (2007).
- [20] Guanghui Min, J. M. Lee, S. B. Kang, H. W. Kim, Mater. Letters 60, 3255 (2006).
- [21] S. H. Lee, C. S. Kang, Korean J. Met. Mater. 49 (11), 893 (2011).
- [22] S. H. Lee, J. H. Kim, Korean J. Met. Mater. 51 (4), 251 (2013).
- [23] H. Kuhn, D. Medlin, Mechanical Testing and Evaluation, ASM Handbook, ASM International 8, 71 (2000).
- [24] G. E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGrawHill Book Company, London, 71 (2001).
Uwagi
1. We greatly appreciated using the Convergence Research Laboratory (established by the MNU Innovation Support Project in 2020) to conduct this research.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e4c4696-b4eb-4920-8e47-0515f906ca4e