Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the novel concept of the magnetoelectric sensor constructed using the amorphous glass ribbon. Its output characteristics (voltage pattern), conditions of work and experimental results are presented. The novel construction allows for minimizing the demagnetizing field in the core of the sensor and linearization of the characteristics between the magnetic field and obtained voltage. Conducted experiments were aimed at determining the sensor operation in the presence of the constant magnetic field (HDC). The main concern of the tests was to verify the linear dependency between the HDC value and the amplitude of the output voltage. Next, the computer model representing the sensor behavior in the constant magnetic field is described. The model implements the parameter identification task based on the regression algorithms. The presented work shows that the proposed device can be used to measure the weak magnetic field and the dependency between the output signal amplitudes and the constant component in the measured magnetic field is approximately linear. This enables measurements of even weak fields.
Rocznik
Tom
Strony
art. no. e144583
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Poland
autor
- Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Poland
autor
- Warsaw University of Life Sciences, Poland
autor
- Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Transport, Electrical Engineering and Computer Science, Poland
Bibliografia
- [1] M. Bichurin et al., “Magnetoelectric magnetic field sensors: A review,” Sensors, vol. 21, p. 6232, 2021, doi: 10.3390/s21186232.
- [2] J. Das et al., “Control of magnetic and electric responses with electric and magnetic fields in magnetoelectric heterostructures,” Appl. Phys. Lett., vol. 96, p. 222508, 2010, doi: 10.1063/1.3443715.
- [3] J.L. Prieto, C. Aroca, E. Lopez, M.C. Sanchez, and P. Sanchez, “Reducing hysteresis in Magnetostrictive-Piezoelectric Magnetic Sensors,” IEEE Trans. Magn., vol. 34, pp. 3913–3915, 1998, doi: 10.1109/20.728303.
- [4] D.A. Burdin, D.V. Chashin, N.A. Ekonomov, Y.K. Fetisov, and A.A. Stashkevich, “High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect,” J. Magn. Magn. Mater., vol. 405, pp. 244–248, 2016, doi: 10.1016/j.jmmm.2015.12.079.
- [5] D. Xie, Y. Wang, and J. Cheng, “Length dependence of the resonant magnetoelectric effect in Ni/Pb(Zr,Ti)O3/Ni long cylindrical composites,” J. Alloy. Compd., vol. 615, pp. 298–301, 2014, doi: 10.1016/j.jallcom.2014.06.208.
- [6] D.T.H. Giang et al., “Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates,” Sensors, vol. 20, p. 2810, 2020, doi: 10.3390/s20102810.
- [7] H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, “Status and perspectives of multiferroic magnetoelectric composite materials and applications,” Actuators, vol. 5, p. 9, 2016, doi: 10.3390/act5010009.
- [8] D. Filippov, V. Petrov, V. Laletsin, N. Poddubnaya, and G. Srinivasan, “Giant Magnetoelectric Effect in Composite Materials in the Region of Electromechanical Resonance,” Tech. Phys. Lett., vol. 30, pp. 6–8, 2004, doi: 10.1134/1.1646700.
- [9] N.H. Duc and D.T. Huong Giang, “Magnetic sensors based on piezoelectric–magnetostrictive composites,” J. Alloy. Compd., vol. 449, pp. 214–218, 2008, doi: 10.1016/j.jallcom.2006.01.121.
- [10] K. Kuczynski, A. Bilski, P. Bilski, and J. Szymanski, “Analysis of the Magnetoelectric Sensor Usability for the Energy Harvesting,” Int. J. Electron. Telecommun., vol. 66, no. 4, pp. 787–792, 2020, doi: 10.24425/ijet.2020.135193.
- [11] S. Dong, J.-F. Li, and D. Viehland, “Vortex magnetic field sensor based on ring-type magnetoelectric laminate,” Appl. Phys. Lett., vol. 85, pp. 2307–2309, 2004, doi: 10.1063/1.1791732.
- [12] K. Kuczynski, “Magnetic field sensor,” utility model PL 067861, 2014, (in Polish), [Online] Available: https://worldwide.espacenet.com/patent/search/family/051754078/publication/PL121952U1?q=ap%3DPL121952* [Accessed: 10. Jun. 2022].
- [13] Catalog Ferroperm Piezoceramics A/S. [Online] Available: bioafm.physics.leidenuniv.nl/dokuwiki/lib/exe/fetch.php?media=biospmlab:tech:ferroperm-catalogue.pdf.
- [14] J. Matauschek, Einführung in Die Ultraschalltechnik, Berlin: VEB Verlag Technik, 1957.
- [15] K. Kuczynski, “Possibilities of the application of hybrid magneto-piezoelectric junction as the magnetic field sensor,” Przegląd Elektrotechniczny, vol. 86, no. 4, pp. 69–71, 2010 (in Polish).
- [16] L. Chen, Y. Wang, T. Luo, Y. Zou, and Z. Wan, “The Study of Magnetoimpedance Effect for Magnetoelectric Laminate Composites with Different Magnetostrictive Layers,” Materials, vol. 14, p. 6397, 2021, doi: 10.3390/ma14216397.
- [17] K. Kuczynski, L. Sabut, A. Bienkowski, and G. Dymny, “Newly Developed Systems for Magnetostrictive Materials Strain Measurements,” Acta Phys. Pol. A, vol. 113, pp. 71–74, 2008, doi: 10.12693/APhysPolA.113.71.
- [18] M.D. Mermelstein and A. Dandridge, “Low-frequency magnetic field detection with a magnetostrictive amorphous metal ribbon,” Appl. Phys. Lett., vol. 51, pp. 545–547, 1987, doi: 10.1063/1.98394.
- [19] D.A. Filippov, M.I. Bichurin, C.W. Nan, and J.M. Liu, “Magnetoelectric effect in hybrid magnetostrictive-piezoelectric composites in the electromechanical resonance region,” J. Appl. Phys., vol. 97, p. 113910, 2005, doi: 10.1063/1.1929865.
- [20] C.M. Leung, J. Li, D. Viehland, and X. Zhuang, “A review of applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors to energy harvesters to highly efficient power converters,” J. Phys. D, Appl. Phys., vol. 51, p. 263002, 2018, doi: 10.1088/1361-6463/aac60b.
- [21] B. Pozo, J.I. Garate, J.Á. Araujo, and S. Ferreiro, “Energy harvesting technologies and equivalent electronic structural models – review,” Electronics, vol. 8, p. 486, 2019, doi: 10.3390/electronics8050486.
- [22] F. Narita, M. and A. Fox, “Review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications,” Adv. Eng. Mater., vol. 20, p. 1700743, 2018, doi: 10.1002/adem.201700743.
- [23] S. Priya and D.J. Inman, Eds. Energy harvesting technologies, Springer Science+Business Media, LLC, 2009.
- [24] J. Kaleta, Smart magnetic materials. Structure, manufacturing, testing properties, application, Wroclaw University of Technology Publishing House, Wroclaw, 2013 (in Polish).
- [25] K. Kuczynski and G. Parzonko, “Possibilities of the energy recovery from the environment (energy harvesting) and other ways of powering electric vehicles,” elektro.info, vol. 179, no. 11, pp. 58–61, 2019 (in Polish).
- [26] M.J. Dapino, “On magnetostrictive materials and their use in adaptive structures,” Struct. Eng. Mech., vol. 17, no. 3-4, pp. 303–329, 2004, doi: 10.12989/sem.2004.17.3.
- [27] P. Guzdek, W. Grzesiak, P. Zachariasz, and G. Kolaszczynski, “Magnetostrictive properties of multiferroic composites”, Przegląd Elektrotechniczny, vol. 92, pp. 29–32, 2016, doi: 10.15199/48.2016.09.07 (in Polish).
- [28] Y. Uwatoko, I. Umehara, M. Ohashi, T. Nakano, and G. Oomi, “Chapter 252 Thermal and Electronic Properties of Rare Earth Compounds at High Pressure”, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, 2012, doi: 10.1016/B978-0-444-54316-5.00001-6.
- [29] É. du Trémolet de Lacheisserie, D. Gignoux, and M. Schlenker, Magnetism – Fundamentals, Materials and Applications, Springer, New York, 2002, doi: 10.1007/978-0-387-23062-7.
- [30] D. Jiles, Introduction to Magnetism and Magnetic Materials, 3rd ed., CRC Press, 2015, doi: 10.1201/b18948.
- [31] G. Srinivasan, S. Priya, and N.X. Sun, Composite Magnetoelectrics – Materials, Structures, and Applications, Woodhead Publishing Series in Electronic and Optical Materials: Number 62, Elsevier, 2015.
- [32] Catalog Metglas 2605Co. [Online] Available: https://metglas.com/brochures/
- [33] P. Dadhich, R. Prajesh, R. Mukhiya, and S.S. Kumar, “Sensitivity and Linearity Enhancement of Piezoresistive Pressure Sensor Using Stress Concentration Structure,” IEEE 16th India Council International Conference (INDICON), India, 2019, doi: 10.1109/INDICON47234.2019.9029015.
- [34] C. Chun-Chi, C. Chao-Lieh, and L. Yi, “All-digital linearity enhancement technique for time-domain smart temperature sensors,” Procedia Eng., vol. 87, pp. 1247–1250, 2014, doi: 10.1016/j.proeng.2014.11.409.
- [35] X. Sun, T. Yamada, and Y. Takemura, “Output characteristics and circuit modeling of the wiegand sensor,” Sensors, vol. 19, p. 2991, 2019, doi: 10.3390/s19132991.
- [36] P. Frydrych, R. Szewczyk, and J. Salach, “Magnetic fluxgate sensor characteristics modeling using extended preisach model,” Acta Phys. Pol. A., vol. 126, pp. 18–19, 2014, doi: 10.12693/aphyspola.126.18.
- [37] W. Zhu et al., “Predicting and optimizing coupling effect in magnetoelectric multi-phase composites based on machine learning algorithm,” Compos. Struct., vol. 271, p. 114175, 2021, doi: 10.1016/j.compstruct.2021.114175.
- [38] Y. Wang and X. Yan, “Soft sensor modeling method by maximizing output-related variable characteristics based on a stacked autoencoder and maximal information coefficients,” Int. J. Comput. Intell. Syst., vol. 12, no. 2, pp. 1062–1074, 2019, doi: 10.2991/ijcis.d.190826.001.
- [39] J. Fox, Applied regression analysis and generalized linear models. Third Edition, Sage Publications, Inc., 2016.
- [40] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference, and prediction. 2nd Ed., Springer New York, 2017, [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-0-387-84858-7.pdf?pdf=button%20sticky [accessed: 10. Jun. 2022].
- [41] K. Behrooz, M. Cihan, and K. Ozgur, “Comparison of four heuristic regression techniques in solar radiation modeling: kriging method vs rsm, mars and m5 model tree,” Renew. Sust. Energ. Rev., vol. 81, pp. 330–341, 2018, doi: 10.1016/j.rser.2017.07.054.
- [42] M. Rohani, H. Jazayeri-Rad, and M. Behbahani, “Continuous prediction of the gas dew point temperature for the prevention the foaming phenomenon in acid gas removal units using artificial intelligence models,” Int. J. Comput. Intell. Syst., vol. 10, pp. 165–175, 2017, doi: 10.2991/ijcis.2017.10.1.12.
- [43] J.A. Lopez and E. Caicedo, “Parametric identification using multilayer perceptron,” International Conference on Industrial Electronics and Control Applications, 2005, p. 4, doi: 10.1109/icieca.2005.1644375.
- [44] I. Rojek, D. Mikołajewski, J. Nowak, Z. Szczepański, and M. Macko, “Computational intelligence in development of 3d printing and reverse engineering,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140016, 2022, doi: 10.24425/bpasts.2021.140016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e488842-1820-44e8-ac7f-558d84b102e2