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Abstract

Atrial fibrillation is a common cardiac arrhythmia, and its incidence increases with age.
Currently, numerous deep learning methods have been proposed for AF detection. How-
ever, these methods either have complex structures or poor robustness. Given the evi-
dence from recent studies, it is not surprising to observe the limitations in the learning
performance of these approaches. This can be attributed to their strictly homogenous
conguration, which solely relies on the linear neuron model. The limitations mentioned
above have been addressed by operational neural networks (ONNs). These networks
employ a heterogeneous network configuration, incorporating neurons equipped with di-
verse nonlinear operators. Therefore, in this study, to enhance the detection performance
while maintaining computational efficiency, a novel model named multi-scale Self-ONNs
(MSSelf-ONNs) was proposed to identify AF. The proposed model possesses a signif-
icant advantage and superiority over conventional ONNs due to their self-organization
capability. Unlike conventional ONNs, MSSelf -ONNs eliminate the need for prior op-
erator search within the operator set library to find the optimal set of operators. This
unique characteristic sets MSSelf -ONNs apart and enhances their overall performance.
To validate and evaluate the system, we have implemented the experiments on the well-
known MIT-BIH atrial fibrillation database. The proposed model yields total accuracies
and kappa coefficients of 98% and 0.95, respectively. The experiment results demon-
strate that the proposed model outperform the state-of-the-art deep CNN in terms of both
performance and computational complexity.

Keywords: convolutional neural network, operational Neural Networks, atrial fibrillation
detection, ECG classification.
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1 Introduction

Atrial fibrillation (AF) is the most common car-
diac arrhythmia and is associated with high mortal-
ity and morbidity rates in many cardiovascular dis-
eases [1]. Currently, the global prevalence of AF
is 1%-2% of the total population, and it is expected
to triple by the year 2050 [2]. Research indicates
that AF increases the risk of stroke by five times
compared to the general population, and the mor-
tality rate of ischemic stroke associated with atrial
fibrillation is nearly twice as high as that of non-
atrial fibrillation cases [3]. It is a cardiovascular
disease that requires urgent medical attention [4]. In
the early stages, atrial fibrillation often manifests as
paroxysmal and asymptomatic. If left untreated, it
may progress to persistent or even permanent atrial
fibrillation, making rhythm restoration more chal-
lenging [5-6]. Therefore, accurate diagnosis of AF
is crucial in preventing its further progression to
other heart diseases and stroke complications.

Common methods for detecting atrial fibrilla-
tion include pulse palpation, photoplethysmogra-
phy, oscillographic blood pressure, and electrocar-
diogram (ECG) diagnosis [7]. Among them, ECG
diagnosis is the gold standard for clinical testing
of atrial fibrillation [7]. The characteristics of the
ECG during the occurrence of atrial fibrillation in-
clude the absence of P-waves, highly irregular vari-
ations in R-R intervals, and the presence of undu-
lating atrial activity [8]. Conventional ECG mon-
itoring requires patients to be in a fixed medical
setting and lie down for a limited period of time.
Within this limited time, only a small amount of
information about the heart’s condition can be ob-
tained. However, paroxysmal and intermittent atrial
fibrillation episodes are often short, typically lasting
only a few seconds [9]. Conventional ECG moni-
toring is challenging to capture these brief episodes
of the disease. To address this, 24-hour ambulatory
ECG monitoring devices and wearable monitoring
devices are used to record longer periods of car-
diac activity, enabling the detection of occasional or
paroxysmal abnormal cardiac activity [10]. How-
ever, ECG signals are susceptible to external noise
interference, such as power line interference, elec-
trode contact noise, and motion artifacts, resulting
in ECG morphological changes [11]. Even for an
experienced clinical physician, it is time-consuming
and laborious to observe various abnormal cardiac

rhythm changes from long-term ECG recordings.
There is also a risk of missed diagnoses. Therefore,
many researchers have proposed automatic detec-
tion algorithms for atrial fibrillation to improve the
diagnostic efficiency of doctors [12-13].

In general, the AF detection methods can be cat-
egorically grouped into two groups: manual feature
extraction methods and automatic feature learning
methods. The RR interval (RRI) features and atrial
activity (AA) features are mainly used for the first
method. Rahul et at. [14] utilize the RR inter-
val approach revealed the presence of three distinct
types of arrhythmia, including atrial rhythm. Based
on the RR interval, Chen et al. [15] combined ten
signal features together to diagnose heart disorders.
Hirsch et al. [16] proposed a hybrid approach uti-
lizes features related to both the RRI and AA. They
obtained state-of-the-art classification performance.
Millán et al. [17] applied empirical mode decompo-
sition to analyze the denoised ECG signal and trans-
formed the processed signal into its corresponding
mode function to extract the P wave features for the
purpose of atrial fibrillation detection. In the study
presented in [18], a method was introduced that uti-
lizes the mean instantaneous frequency of the ST
intervals to provide a quantitative assessment of the
risk of sudden cardiac deaths. Udawat et al. [19]
proposed a new approach for automated AF de-
tection by using a set of time-domain, frequency-
domain and nonlinear features from the RR inter-
vals. Grégoire et al. [20] initially employed wavelet
transform to process the ECG signals, and subse-
quently selected 44 ECG features for the detection
of AF. Although these studies have achieved good
classification performance, they necessitate domain
expertise and typically perform effectively on ECG
data that is free from noise or artifacts.

In contrast to conventional methods mentioned
above, deep learning approaches have the ad-
vantage of automatically extracting deep features,
thereby enhancing accuracy without heavy reliance
on expert knowledge. As a result, researchers
have made significant efforts to utilize deep learn-
ing methods for atrial fibrillation (AF) detection,
leading to state-of-the-art results [21]. Petmezas et
al. [22] developed a hybrid CNN-LSTM network
to enhance the classification of AF in imbalanced
ECG datasets. Their approach achieved a sensitiv-
ity of 97.87% and specificity of 99.29%, demon-
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strating its effectiveness in accurately identifying
AF cases.Tran et al. [23] proposed a novel model,
MultiFusionNet, where two sub-networks are com-
bined within single network architecture. This
unique design has shown promising performance,
even when trained with a limited dataset. Shi et
al. [24] introduced a loop-locked framework for
the identification of atrial fibrillation (AF), utilizing
transfer learning and active learning. Jin et al. [25]
introduced a novel approach called Domain Adap-
tive Residual Network to detect atrial fibrillation
(AF) in unlabeled datasets by leveraging the detec-
tion knowledge obtained from labeled datasets. A
novel AF detection model has been proposed in ref-
erence [26], incorporating a conglomerate parallel
structure of Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) framework.
This architecture aims to enhance feature compre-
hension and classification capabilities for improved
AF detection. Gündüz et al. [27] used bidirectional
long short-term memory (BiLSTM) network for
AF classification based on spectral features and P
waves. BiLSTM networks, which can capture time-
sensitive features of ECG, have demonstrated supe-
rior performance compared to cascades of CNN and
long short-term memory (LSTM) networks. Rahul
et al. [28] proposed a BiLSTM network that de-
tects AF by using one-dimensional electrocardio-
gram signals and their time-frequency representa-
tions as inputs. Ding et al. [29] developed a log-
spectral matching GAN model for AF detection,
which serves as a data augmentation method to ad-
dress class imbalance.

Although these methods mentioned have shown
impressive classification performance, they rely on
deep CNNs with complex architectures. Addition-
ally, these approaches demand a substantial amount
of labeled ECG data for training. Furthermore, their
implementation is hindered by the necessity for spe-
cialized parallelized hardware, making them unsuit-
able for direct deployment on low-power or mobile
devices [30].

Based on recent research findings, [31-34],
CNNs and their predecessors, Multi-Layer Percep-
trons (MLPs), share a common reliance on the an-
cient linear neuron model. As a result, they ex-
cel in effectively learning problems that can be lin-
early separated. This means that when the data
can be easily divided into distinct classes by a

straight line or plane, CNNs and MLPs perform
admirably. However, these models may encounter
significant difficulties or even experience complete
failure when confronted with problem domains that
exhibit high levels of nonlinearity and complexity.
In such scenarios, where the solution space is intri-
cate and nonlinear, the linear neuron model proves
insufficient for capturing the underlying patterns
and relationships, leading to compromised perfor-
mance or outright failure of these models. To over-
come the aforementioned limitations, a recent de-
velopment in neural network models called Op-
erational Neural Networks (ONNs) [35] has been
proposed. Unlike traditional CNNs and MLPs,
ONNs are designed as heterogeneous network mod-
els that incorporate various types of nonlinear neu-
rons. This diversification of neuron types allows
ONNs to capture and model complex nonlinear re-
lationships within the data more effectively [36].
The incorporation of distinct nonlinear neurons in
ONNs offers a promising approach to address the
challenges posed by highly nonlinear and complex
problem domains [36]. However, ONNs, too, have
a variety of limits and downsides as a result of such
fixed and static architecture [37]. Firstly, the avail-
ability of operators is constrained to those present in
the operator set library. If the required operator set
for a specific learning problem is not included in the
library, achieving the desired learning performance
becomes unattainable [37]. Secondly, in order to
simplify the search space, a reduced number of op-
erator sets can be allocated to all neurons within
each hidden layer, resulting in a limited level of het-
erogeneity [38]. This compromises the network’s
ability to explore diverse computati onal capabili-
ties. Lastly, the process of searching for the opti-
mal operator sets for each layer is an ongoing ne-
cessity, particularly for deeper networks [38]. This
search can be laborious and time-consuming, fur-
ther adding to the challenges associated with ONNs.

In order to address the challenges mentioned
above, Kiranyaz et al. [37] introduced self-
organized operational neural networks (Self-ONNs)
with generative neurons. The key innovation in
Self-ONNs is the incorporation of generative neu-
ron models, enabling the networks to self-organize
during the back-propagation (BP) training process.
This self-organization is achieved by iteratively
generating nodal operators that aim to maximize the
learning performance [37]. By leveraging the gen-
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erative neuron model, Self-ONNs gain the ability
to create various non-linear nodal operators, which
significantly enhances their operational diversity
and flexibility. Self-ONNs represent an advanced
extension of conventional CNNs [39]. While CNNs
rely on a homogenous network structure with lin-
ear neuron models, Self-ONNs introduce a het-
erogeneous network architecture featuring a ”self-
generating” non-linear neuron model known as gen-
erative neurons. This fundamental difference al-
lows Self-ONNs to exhibit superior diversity and
achieve enhanced learning performance [39].

In this study, a novel model called Multi-Scale
Self-ONNs (MSSelf-ONNs) is proposed, which uti-
lizes multi-scale kernel to extract different scale
features. This will leads to more accurate classi-
fication. To accomplish a multi-scale feature rep-
resentation, incepting model is integrated into the
Self-ONNs. The rest of the paper is structured as
follows: Section 2 provides an overview of the ECG
datasets utilized in the study. Section 3 presents the
proposed approach in detail. The performance of
the proposed model is evaluated in Section 4 by uti-
lizing standard performance metrics. The obtained
results are then compared with those achieved by
recent state-of-the-art approaches. Lastly, Section
5 concludes the paper by summarizing the findings
and implications of the study. It also provides sug-
gestions for potential areas of future research.

2 Materials

2.1 Dataset

To validate the feature categorization performed by
the proposed model, this study utilizes the ECG sig-
nals from the MIT-BIH AF database which can be
download from https://physionet.org/content/afd-
b/1.0.0/. The database consists of signals from var-
ious cardiac rhythms, including Atrial Fibrillation
(AF), Normal-Atrial Fibrillation (N-AF), and Nor-
mal Sinus Rhythm (NSR). These datasets are em-
ployed to evaluate and validate the effectiveness
of the proposed model in accurately categorizing
the features. The database contains 25 long-term
recordings of ECG signals obtained from patients.
Specifically, it consists of 23 records, each from
a different patient. These recordings are unique
and have a duration of 10 hours. The ECG sig-
nals were sampled at a rate of 250 Hz, meaning

that 250 data points were collected per second. The
signal span, which represents the range of voltage
values, was +/- 10 mV. The recordings were digi-
tized with a resolution of 12 bits, allowing for pre-
cise measurement and representation of the signal.
Based on the information provided in Res. [25], the
recordings labeled as ”00735” and ”03665” are un-
available. Additionally, the recordings labeled as
”04936” and ”05091” contain incorrect reference
annotations. As a result, these four recordings are
excluded from the dataset used in this study. The re-
maining 21 recordings are used to build the dataset
for this research. Table 1 displays the rhythm an-
notation files created by expert cardiologists. They
categorized ECG rhythms into four types: normal
(N), atrial fibrillation (AFIB), atrial flutter (AFL),
and AV junctional rhythm (J). Each rhythm was
marked and documented separately by the cardiol-
ogists. In this study, AFL, J, and N are attributed
to non-AFIB category. Therefore, samples were as-
signed a binary classification as “AFIB” or “Not-
AFIB”.

2.2 Data Preprocessing

The initial stage of data preprocessing typically
involves applying a technique to remove noise from
the ECG signal. Two primary types of noise can
potentially corrupt an ECG signal: high-frequency
noise, such as powerline interference and Gaussian
white noise, and low-frequency noise, which in-
cludes baseline wander noise among other factors
[22]. According to Res. [22] a 7-th order Butter-
worth high-pass filter was utilized with a cutoff fre-
quency of 0.5 Hz. The purpose of this filter was to
eliminate baseline wander noise.

Table 1. The category distribution of the MIT-BIH
AF dataset

Lable class number of
beats

0 N 619345
1 AFIB 345241
2 AFL 5241
3 J 182

Based on the characteristic variability of R
Peak-to-Peak duration in AFIB, it was hypothesized
that including a minimum of 3 beats in each anal-
ysis segment would be beneficial [40]. According
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to Res. [40], the duration of ECG segments used in
this study was 6 s. Therefore, a segment contains
1500 samples. Each consecutive segment is non-
overlapping. These points are taken as the input of
the proposed model.

3 Methodology

3.1 Self-organized Operational Neural
Networks

CNN and Multi-Layer Perceptrons (MLPs)
both employ a ”linear” neuron model. However,
CNNs introduce two additional restrictions: kernel-
wise limited connections and weight sharing. These
restrictions transform the linear weighted sum used
in MLPs into the convolution formula utilized in
CNNs. Figure 1 (left) provides an illustration of
this transformation, showcasing three consecutive
convolutional layers without sub-sampling (pool-
ing) layers. On the other hand, operational neural
networks draw inspiration from Generalized Oper-
ational Perceptrons (GOPs) and expand upon the
application of linear convolutions in convolutional
neurons through the incorporation of nodal and
pool operators. These operators form the opera-
tional layers and neurons within ONN. Addition-
ally, ONNs inherit the two fundamental restrictions
of weight sharing and limited (kernel-wise) connec-
tivity from conventional CNNs.

In Figure 1 (left), we describe the situation of
the k-th neuron in the l-th layer of a convolutional
neural network. The output of the k-th CNN neuron
can be represented as follows [41]:

xl
k=bl

k+
Nl−1

∑
i=0

xl
ik (1)

where bl
k is the bias of the k-th CNN neuron, and xl

ik
is the result of convolution operation.

xl
ik= Conv2d(wik,yl−1

i ) (2)

In equation (2), Conv2d represents the 2D convolu-
tion operation. By definition, the convolution oper-
ation can be written as [41]:

xl
ik (m,n)=

K−1

∑
r=0

K−1

∑
t=0

wl
ik(r, t)y

l−1
i (m+r,n+t) (3)

The operational neuron [35] generalizes the convo-
lution operation in CNN as follows [41]:

∼
xl

ik (m,n)=

Pl
k(

l
k(w

l
ik(r, t),y

l−1
i (m+ r,n+ t)))

(K−1,K−1)
(r,t)=(0,0) (4)

where φl
kand Pl

kare named as nodal and pool oper-
ators, respectively. In a heterogenous ONN con-
figuration, each neuron is assigned a unique com-
bination of φ and P operators. How to choose
the appropriate operators are difficult [35]. Ac-
cording to Res [37], Self-ONNs utilize a com-
posite nodal function that is dynamically gener-
ated and adjusted through iterative backpropaga-
tion, employing a Taylor series-based function ap-
proximation. The Taylor series expansion of an in-
finitely differentiable function f (x) about a point a
=0 is given as:

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn (5)

The q-th order truncated approximation, also
known as the Taylor polynomial, can be represented
by a finite summation expressed as follows:

f (x)(Q)=
Q

∑
n=0

f (n)(0)
n!

xn (6)

The aforementioned formulation can effectively
approximate any function, denoted as (x), with a
high degree of accuracy in the vicinity of 0. If the
activation function restricts the input feature maps
of the neuron around 0, such as the hyperbolic tan-
gent (tanh) function, the formulation described in
equation (2) can be utilized to construct a com-
posite nodal operator. In this composite operator,
the power coefficients, represented as f (n)(0)

n! , can be
learned parameters of the network during the train-
ing process. In Res. [42], it was demonstrated that
the nodal operator of the k-th generative neuron in
the l-th layer can be expressed in the following gen-
eral form:

f k
l (Yl−1,W k

l ,Q) =
Q

∑
n=0

Y q
l−1⊗W k(q)

l (7)

where Y q
l−1 is the corresponding input and W k

l is the

three-dimensional weight matrix and W k(q)
l is the q-



68 Junming Zhang, Hao Dong, Jinfeng Gao, Ruxian Yao, Gangqiang Li, Haitao Wu

Figure 1. An illustration of the nodal operations in the kernels of the k-th CNN (left), ONN (middle), and
Self-ONN (right) neurons at layer l [37].

th slice of W k
l . For more comprehensive informa-

tion regarding the theory and formulations of Self-
ONNs, please refer to [42]. It provides detailed ex-
planations and insights into the theory and forward
propagation of Self-ONN.

3.2 Multi-Scale Self-ONNs

The multi-scale approach allows for the detec-
tion of various ECG signal characteristics, such as
P waves, QRS complexes, and T waves, at different
scales. Different scales may correspond to different
physiological phenomena, such as high-frequency
components indicating fast-changing electrical ac-
tivity and low-frequency components representing
slower cardiac processes. By considering multiple
scales, the classification algorithm can take into ac-
count both broad patterns and fine details, leading
to improved accuracy and robustness in identifying
different types of cardiac conditions, arrhythmias,
or abnormalities [43]. The utilization of multi-scale
ECG representation is an important factor in en-
hancing the effectiveness of ECG signal classifica-
tion algorithms and improving the overall diagnos-
tic capabilities in cardiology. Therefore, a Multi-
Scale Self-ONNs model is proposed in this study
for the detection of AF. Figure 2 illustrates the over-
all framework of the automated atrial fibrillation de-
tection. To extract multi-scale features, the kernels
of different sizes, such as 3 x 1, 15 x 1, et al., are
used. Only three operational layers and three pool-
ing layers are used.

The hyperparameter Q determines the level of
approximation in the Taylor series. When Q is equal
to 1, Self-ONNs model degenerates into a com-

mon convolutional network. When Q takes a larger
value, the computational cost of the proposed model
will be increased. How to choose a suitable Q value
will be presented in the section 4.

4 Experiment

4.1 Evaluation Metrics

To assess the classification performance of the
proposed model, all experimental results are mea-
sured using specificity, sensitivity, F1 score, total
accuracy (TAC), and kappa coefficient (KP) [44-
45].

TAC =
T P+T N

T P+FN+FP+T N
%

sensitivity=
T P

T P+FN
%

specificity=
T N

T N+FP
%

PPV =
T P

FP+T P
%

NPV =
T N

T N+FN
%

The classification performance of the proposed
model is comprehensively measured using the F1
score, which is calculated using the formula (2 *
recall * precision) / (recall + precision). The true
positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) are denoted by these
terms. In this study, a ten-fold cross-validation ap-
proach is employed. The experiments were con-
ducted using MATLAB 2019a and Python Google
Tensorflow 2.0, running on a machine with 64 GB
memory and an NVidia Geforce GTX 3080 GPU.
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Figure 1. An illustration of the nodal operations in the kernels of the k-th CNN (left), ONN (middle), and
Self-ONN (right) neurons at layer l [37].

th slice of W k
l . For more comprehensive informa-

tion regarding the theory and formulations of Self-
ONNs, please refer to [42]. It provides detailed ex-
planations and insights into the theory and forward
propagation of Self-ONN.
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of different sizes, such as 3 x 1, 15 x 1, et al., are
used. Only three operational layers and three pool-
ing layers are used.
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approximation in the Taylor series. When Q is equal
to 1, Self-ONNs model degenerates into a com-

mon convolutional network. When Q takes a larger
value, the computational cost of the proposed model
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4 Experiment
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model is comprehensively measured using the F1
score, which is calculated using the formula (2 *
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positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) are denoted by these
terms. In this study, a ten-fold cross-validation ap-
proach is employed. The experiments were con-
ducted using MATLAB 2019a and Python Google
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Figure 2. The proposed MSSelf-ONNs framework.

Figure 3. Accuracy and loss of the proposed model for automated AF detection.
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4.2 Experimental Setup

The 1D MSSelf-ONNs model, depicted in Fig-
ure 2, has been implemented in our study. This
model is designed with the primary objective of ex-
tracting learned features through three operational
layers. These learned features are then combined
with two dense layers to analyze and classify the
data. The rst operational layer is used to extract
multi-scale features, consisting of 64, 40, 26 and
16 neurons respectively, followed by a max-pooling
layer of size 5 x 1. The second operation layer is
composed of 146 neurons with a filter size of 7 x
1, followed by a max-pooling layer of size 6 x 1.
The third operation layer is composed of 146 neu-
rons with a filter size of 3 x 1, followed by a max-
pooling layer of size 5 x 1. The nonlinear activation
function tanh is used in MSSelf-ONN. The Adam
optimizer is employed in this study, with a learning
rate (LR) set to 0.001. Additionally, an LR sched-
uler is implemented, which decreases the LR by a
factor of 0.02 every 10 epochs. The Kaiming ini-
tializer was utilized to initialize the weights of the
model. The model was trained for 40 epochs using
a batch size of 64.

4.3 Results

The training and validation accuracies and
losses of the proposed MSSelf-ONN model at each
epoch were visualized in Figure 3. The validation
curve closely resembled the training curve. This
alignment between the two curves indicates that the
model did not experience overfitting. Figure 3 also
demonstrates that the accuracy and loss metrics sta-
bilize at consistent values after several iterations of
learning when evaluated on the validation dataset.

The performances of the proposed model for
automated detection of AF from a single-lead ECG
signal are presented in Table 2. When evaluating
the test dataset, the proposed model achieved a KP
of 0.98, a sensitivity (SE) of 98.6%, a specificity
(SP) of 99.3%, a TAC of 99.1%, a positive predic-
tive value (PPV) of 98.8%, and a negative predictive
value (NPV) of 99.2%. These results indicate that
the proposed model performed exceptionally well
in detecting AF.

Figure 4. Classification performances when
different Q values are applied to MSSelf-ONNs.

In equation (6), Q represents a hyperparameter
that governs the level of the Taylor series approx-
imation. Choosing an appropriate Q value will af-
fect the performance of the proposed model, such as
accuracy and computational complexity. The best
way to find suitable network parameters is literally
to perform trial and error tests. To select the appro-
priate Q value, we have tested the performances of
MSSelf-ONN by using different Q values (2, 3, 4,
5, 6, 7). Figure 4 shows the classification perfor-
mances of the proposed model. From Figure 4, we
can conclude that the best Q value is 6. However,
when Q is greater than 6, the model has high com-
putational complexity. When q is taken as 3 and 5,
the performance of the model remains almost con-
stant. Therefore, according to Figure 4, Q is set to 3.

Table 2. Performance evaluation for the two
models.

models TAC KP
CNN-3
MSSelf-
ONN

0.91
0.991

0.82
0.98

To evaluate the advantages of the proposed
model, we conduct a comparative analysis involv-
ing MSSelf-ONN with an order of Q=3, the cor-
responding CNN with an equal number of neu-
rons, and with approximately equivalent network
parameters. The corresponding CNN with the same
number of parameters are named as CNN-3. Fig-
ure 5 shows the network structure of the CNN-
3. Table 3 provides the comparison results of the
two models. It is observed from Table 3 that the
TAC and KP based on the CNN-3 model are 0.91
and 0.82 respectively. This means that the pro-
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priate Q value, we have tested the performances of
MSSelf-ONN by using different Q values (2, 3, 4,
5, 6, 7). Figure 4 shows the classification perfor-
mances of the proposed model. From Figure 4, we
can conclude that the best Q value is 6. However,
when Q is greater than 6, the model has high com-
putational complexity. When q is taken as 3 and 5,
the performance of the model remains almost con-
stant. Therefore, according to Figure 4, Q is set to 3.

Table 2. Performance evaluation for the two
models.
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CNN-3
MSSelf-
ONN

0.91
0.991

0.82
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To evaluate the advantages of the proposed
model, we conduct a comparative analysis involv-
ing MSSelf-ONN with an order of Q=3, the cor-
responding CNN with an equal number of neu-
rons, and with approximately equivalent network
parameters. The corresponding CNN with the same
number of parameters are named as CNN-3. Fig-
ure 5 shows the network structure of the CNN-
3. Table 3 provides the comparison results of the
two models. It is observed from Table 3 that the
TAC and KP based on the CNN-3 model are 0.91
and 0.82 respectively. This means that the pro-
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posed model has a more superior classification abil-
ity for AF analysis. The reason why MSSelf-ONN
is superior to CNN-3 is that a Self-ONN is char-
acterized by being highly heterogeneous and com-
prised of generative neurons. This unique com-
position enables the optimization of the nodal op-
erator function for each kernel element, resulting
in Self-ONNs achieving maximum heterogeneity,
which enhances both network diversity and learn-
ing performance [31]. Consequently, the conven-
tional weight optimization used in traditional CNNs
is completely replaced by an operator generation
process through optimization techniques. Interest-
ingly, despite the highly nonlinear nature of its ker-
nel elements, each layer of Self-ONN can still be
implemented using a single 1-D convolution, facil-
itating a parallelized implementation similar to that
of conventional CNNs.

Table 3. Performance comparison with different
kernels.

kernel size TAC KP
3 x 1
7 x 1
15 x 1
20 x 1
multi-scale
kernels

0.93
0.94
0.92
0.9
0.991

0.9
0.93
0.91
0.9
0.98

In this study, to learn multi-scale feature repre-
sentation, various multi-scale kernels are used. To
verify the effect of multi-scale kernels, we replaced
them with different single-scale kernels individu-
ally. For Figure 1, we replace multi-scale kernels
with 3 x 1, 7 x 1, 15 x 1 and 20 x 1 kernels, re-
spectively. The remaining network structures and
parameters remain unchanged. Table 4 presents
comparison results of different kernels. From Ta-
ble 4, we can see that the performance of multi-
scale kernels is much better than those of single-
scale kernels. According to [8], the disappearance
of p-waves and the heart rhythm disorders are the
main characteristics of AF. To simultaneously cap-
ture these two atrial fibrillation features, it is nec-
essary to set kernels of different scales. The multi-
scale kernels should be able to capture temporal pat-
terns at different time scales. Long-term character-
istics embody general trends, while short-term char-
acteristics signify delicate fluctuations within spe-

cific local areas. Both types of features hold signif-
icant potential in enhancing the prediction accuracy
for specific tasks.

4.4 Compared With Existing Models

To demonstrate the efficacy of the proposed
model in this paper, a comparative analysis is con-
ducted using the MIT-BIH AF database, and the
results are presented in Table 5. These studies in-
clude the time-frequency analysis time-frequency
analysis method proposed by Udawat et al. [19],
the different machine learning (ML) algorithms by
Jahan et al. [46], deep CNN-LSTM proposed by
Petmezas et al. [22] and the network model com-
bining RNN network with CNN proposed by Sub-
ramanyan et al. [26]. Based on the data in Table
5, it is evident that Ref. [19] achieved the high-
est performance, with a SE of 0.988, a TAC of
99.5%, and a SP of 0.992. The exceptional perfor-
mance can be attributed to the utilization of time-
domain, frequency-domain and nonlinear features
are extracted from the R-R intervals, which pro-
vides promising result. In contrast to MSSelf-ONN,
Ref. [19] relies on handcrafted features that ne-
cessitate domain knowledge from designers. How-
ever, designers often face uncertainty regarding the
selection of appropriate handcrafted features from
a vast array of options. However, the proposed
method is an end-to-end model, which can auto-
matically extract features within its layers from
recorded ECG signal. More important, compared
with existing deep learning models, the network
structure of MSSelf-ONN is very simple. There-
fore, this method can be deployed on wearable or
portable devices for real-time monitoring of AF.
The proposed method serves as a valuable decision-
support tool for automated AF detection.

5 Conclusion

In this study, we have introduced an innovative
approach for detection AF from ECG recordings,
eliminating the need for any handcrafted features.
According to Table 2, the proposed model achieves
outstanding performance, as reflected by a KP of
0.98, an SE of 0.988, an SP of 0.992, and a TAC
of 99.1%. These results provide evidence that both
the proposed model and training approach are valu-
able and successful. The main advantage of the
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Figure 5. The network structure of CNN-3.

model is the capability of each generative neuron in
an operational layer to optimize the nodal operator
function of each kernel. This neuron-level hetero-
geneity contributes to enhancing network diversity
and, consequently, improves learning performance.
Moreover, the incorporation of a multi-scale sig-
nal representation enables a high level of discrim-
ination between normal and arrhythmic ECG sig-
nals. Meanwhile, the proposed network complexity
is minimized for a real-time application over any
platform. It also doesn’t require special parallelized
hardware. This model can directly implementable
on low-power and mobile devices. However, the
MSSelf-ONN is very sensitive to signal quality, so
it is not suitable for ECG signals with a lot of noise.

From Table 5, we can see that the classification
performance of MSSelf-ONNs is not the best. The
encouraging outcomes will serve as a driving force
for further investigation and exploration. Future en-
deavors encompass several areas of focus. First, en-
hancing the classification performance of MSSelf-
ONN could involve the incorporation of a recursive
operation that leverages contextual information ef-
fectively. Second, the classification of ECG signal
fragments that encompass multiple classes is an-
other area for exploration. Lastly, evaluating the ef-
ficiency of MSSelf-ONNs by applying it to other
physiological signals presents another avenue for
future research.
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Figure 2. The proposed MSSelf-ONNs framework.

Figure 3. Accuracy and loss of the proposed model for automated AF detection.
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