PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Structure Quality of Web from Electrospun Nanofibres

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrospinning is remarkably a simple and versatile method for producing nanofibres. The diameter of nanofibres can vary from 10 nm to >1000 nm. In electrospinning, most of the attention is focused on producing fibres with a uniform diameter. It is very important to understand how the diameter and its distribution vary with the materials used and the processing parameters. An analysis of literature sources has shown that the distribution curves of the diameters obtained are very complex and do not resemble normal distributions, while they do more closely correspond to those of compound distributions. The goal of this article is to analyse the distributions of the nanofibre diameters and to propose a new method for the evaluation process of nanofibres and the quality of a nanofibre web. The uniformity of structure and the quality of nanofibres web must be described by average values. The peaks of modal values and the percentage quantity of them must be used for evaluation of a web structure.
Rocznik
Strony
233--238
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Materials Engineering, Lithuania, Studentu 56, LT-51424 Kaunas
  • Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Materials Engineering, Lithuania, Studentu 56, LT-51424 Kaunas
Bibliografia
  • [1] Mazoochi, T., Hamadanian, M., Ahmadi, M., Jabbari V. (2012). Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. International Journal of Industrial Chemistry, 3(2), 1-8.
  • [2] Esfandarani, M. S., Johari, M. S. Producing porous nanofibres. Proceedings of the 2nd international conference NANOCON 2010, p. 1-6, Olomouc, Czech Republic.
  • [3] Tucker, T., Stanger, J. J., Staiger, M. P., Kofman, K. The history of the science and technology of electrospinning from 1600 to 1995. Proceeding of the International Istanbul Textile Congress 2013, p. 1-7, Istanbul, Turkey, 2013.
  • [4] Cooley, J. F. Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids. United Kingdom Patent 6385. 19th May 1900.
  • [5] Melcher, J. R., Warren, E. P. (1971). Electrohydrodynamics of a current - carrying semi-insulating jet. Journal of Fluid Mechanics, 47, 127-143.
  • [6] Yener, F., Jirsak, O. Fabrication and optimization of polyvinyl butyral nanofibres produced by roller electrospinning Proceedings of the 12th AUTEX World Textile Conference, p. 251-256, Zadar, Croatia, 2012.
  • [7] Ioannis, S., Chronakis. (2005). Novel nanocoposites and nanoceramics based on polymer nanofibers using electrospinning process-Review. Journal of Materials Processing Technology, 167, 283-293.
  • [8] Mo, X. M., Xu, C. Y., Kotaki, M., Ramakrishna, S. (2004). Electrospun P(LLA-CL) nanofiber: A biomimetric extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 25, 1883-1890.
  • [9] Danelevičiūtė-Vaišnienė, A., Katunskis, J., Buika, G. (2009). Electrospun PVA nanofibres for gas filtration applications. Fibre &Textiles in Eastern Europe, 17(6), 40- 43.
  • [10] Sambaer, W., Zatloukal, M., Kimmer, D. ( 2010). The use of novel digital image analysis technique and rheological tools to characterize nanofiber nonwovens. Polymer Testing, 29, 82-94.
  • [11] Šukytė, J., Adomavičiūtė, E., Milašius, R. (2010) Investigation of the possibility of forming nanofibres withpotato starch. Fibres &Textiles in Eastern Europe, 18(5), 24-27.
  • [12] Vrieze, S. D., Camp, T. V., Nelvig, A., Hagstrom, B., Westbroek, P., et al. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357-1362.
  • [13] Chowdhury, M., Stylios, G. (2010). Effect of experimental parameters on the morphology of electrospun Nylon 6 fibers. International Journal of Basic & Applied Sciences, 10(06), 116-131.
  • [14] Ojha, S., Afshari, M., Kotek, R., Gorga, R. E. (2008). Morphology of electrospun nylon 6 nanofibers as a function of molecular weight and processing parameters. Journal of Applied Polymer Science, 108, 308-319, DOI: 10.1002/ app.27655.
  • [15] Biber, E., Gunduz, G., Mavis, B., Colak, U. (2010). Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly 9ethylene-n-butyl acrylatemaleic anhydride) elastomer blends using Johnson SB statistical distribution function. Applied Physics A Materials Science & Processing, 99, 477-487, DOI: 1007/s00339- 0100-5559-6.
  • [16] Dosunmu, O. O., Chase, G. G, Kataphinan, W., Reneker, D. H. (2006). Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology, 17, 1123-1127.
  • [17] Aluigi, A., Tonetti, C., Rombaldoni, F., Varesano, A., Vineis, C., et al. Methylene blue removal from aqueous solution by keratin nanofibres. Proceedings of the 12th AUTEX World Textile Conference, 287-290, Zadar, Croatia 2012.
  • [18] Ellison, C. J., Phatak, A., Giles, D. W., Macosko, C. W., Bates, F. S. (2007). Melt blown nanofibres: fiber diameter distributions and onset of fiber breakup. Polymer, 48, 3306-3316.
  • [19] Casasola, R., Thomas, N. L., Georgiadou, S. Effect of solvent systems on electrospun polymeric fibres: preliminary study on poly lactic acid (PLA). Proceedings of the International Istanbul Textile Congress 2013, p. 1-6, Istanbul, Turkey, (2013).
  • [20] Tsimpliaraki, A., Zuburtikudis, I., Marras, S. I., Panayiotou, C. Optimizing the nanofibrous structure of non-woven mats of electrospun bio-degradable polymer nanocomposites. Book of Proceedings of International conference Latest Advances in High Tech Textiles and Textile-Based Materials, p. 128-133, Ghent, Belgium,2009.
  • [21] Varabhas, J. S., Chase, G.G., Reneker, D. H. (2008). Electrospun nanofibers from a porous hollow tube. Polymer, 49, 4226-4229.
  • [22] Gu, S., Wu, Q., Ren, J. (2008). Preparation and surface structures of carbon nanofibers produced from electrospun PAN precursors. New Carbon Materials, 23(2), 171-176.
  • [23] Malašauskienė, J., Milašius, R. (2010). Mathematical analysis of the diameter distribution of electrospun nanofibres. Fibres &Textiles in Eastern Europe, 18(6), 45- 48.
  • [24] Malašauskienė, J., Milašius, R. Short-cut Method of Electrospun Nanofibres Diameter Distribution Estimation. Book of Proceedings of 6th International Textile, Clothing & Design Conference - Magic World of Textile, p. 522-525, Dubrovnik, Croatia, 2012.
  • [25] Malašauskienė, J., Milašius, R. (2013). Investigation and estimation of structure of web from electrospun nanofibres. Journal of Nanomaterials, Article ID 416961, DOI: 10.1155/2013/416961.
  • [26] Leaf, G. A. V. Practical Statistics for the Textile Industry: Part I, The Textile Institute, Manchester, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e44ffc7-e8cd-4f06-99e2-698fbffb0e3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.