PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal performance of tubular heat exchangers with the discontinuous swirl-inducing conical baffle with opposite-oriented flow deflectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experiment was conducted to analyze a tubular heat exchanger's turbulent heat transfer characteristics. The heat exchanger was equipped with a newly designed perforated (rectangular) conical baffle plate consisting of two rectangular opposite-oriented flow deflectors with adjustable tilt angles. The baffle plate was installed at the entrance of the heat exchanger, resulting in a counter-swirling flow pattern downstream. Three baffle plates were installed along the flow direction with different pitch ratios (spacing between baffle plates divided by the diameter of the heat exchanger). The experiment examined the effects of pitch ratio (ranging from 0.6 to 1.2), deflector tilt angle (ranging from 30° to 50°) and Reynolds numbers (ranging from 16 500 to 30 000) on the heat transfer performance. The results showed that the pitch ratio and tilt angle significantly affected the performance of the heat exchanger. In particular, a configuration with a tilt angle of 30° and a pitch ratio of 1 resulted in an average improvement of 26.9% in the heat exchanger's performance compared to a heat exchanger without a conical baffle plate under similar operating conditions.
Rocznik
Strony
195--204
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Jharkhand 835215, India
Bibliografia
  • [1] Bergles, A. E., & Webb, R. L. (1985). Guide to the literature on convection heat transfer augmentation. Advances in Enhanced Heat Transfer, 43, 81–89.
  • [2] Shelare, S.D., Aglawe, K.R., & Belkhode, P. . (2022). A review on twisted tape inserts for enhancing the heat transfer. Materials Today Proceedings, 54, 560–565. doi: 10.1016/j.matpr.2021.09.012
  • [3] Poonpakdee, P., Samutpraphut, B., Thianpong, C., Chokphoemphun, S., Eiamsa-ard, S., Maruyama, N., & Hirota, M. (2022). Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms. Energies, 15, 8855.doi: 10.3390/en15238855
  • [4] Abed, N., & Afgan, I. (2020). An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors. International Journal of Energy Research, 44, 5117–5164. doi: 10.1002/er.5271
  • [5] Dong, Z., Liu, P., Xiao, H., Liu, Z., & Liu, W. (2021). A study on heat transfer enhancement for solar air heaters with ripple surface. Renewable Energy, 172, 477–487. doi: 10.1016/j.renene.2021.03.042
  • [6] Barzegar, A., & Vahid, J.D. (2019). Numerical study on heat transfer enhancement and flow characteristics of double pipe heat exchanger fitted with rectangular cut twisted tape. Heat and Mass Transfer, 55, 3455–3472. doi: 10.1007/s00231-019-02667-1
  • [7] Nanan, K., Thianpong, C., Pimsarn, M., Chuwattanakul, V., & Eiamsa-ard, S. (2017). Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators. Applied Thermal Engineering, 114, 130–147. doi: 10.1016/j.applthermaleng.2016.11.153
  • [8] Yaningsih, I., Wijayanta, A. T., Miyazaki, T., & Koyama, S. (2018). Thermal hydraulic characteristics of turbulent singlephase flow in an enhanced tube using louvered strip insert with various slant angles. International Journal of Thermal Sciences,134, 355–362. doi: 10.1016/j.ijthermalsci.2018.08.025
  • [9] Bartwal, A., Gautam, A., Kumar, M., Mangrulkar, C. K., & Chamoli, S. (2018). Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring– metal wire net inserts. Chemical Engineering and Processing: Process Intensification, 124, 50–70. doi: 10.1016/j.cep.2017.12.002
  • [10] Ibrahim, M.M., Essa, M.A., & Mostafa, N.H. (2019). A computational study of heat transfer analysis for a circular tube with conical ring turbulators. International Journal of Thermal Sciences, 137, 138–160. doi: 10.1016/j.ijthermalsci.2018.10.028
  • [11] Nalavade, S.P., Prabhune, C.L., & Sane, N.K. (2019). Effect of novel flow divider type turbulators on fluid flow and heat transfer. Thermal Science and Engineering Progress, 9, 322–331. doi:10.1016/j.tsep.2018.12.004
  • [12] Hassan, J. H., & Hameed, V. M. (2022). Evaluate the hydrothermal behavior in the heat exchanger equipped with an innovative turbulator. South African Journal of Chemical Engineering, 41,182–192. doi: 10.1016/j.sajce.2022.06.003
  • [13] Lamlerd, B., Bubphachot, B., & Chompookham, T. (2023). Experimental investigation of heat transfer characteristics of steam generator with circular-ring turbulators. Case Studies in Thermal Engineering, 41, 102549. doi: 10.1016/j.csite.2022.102549
  • [14] Jayranaiwachira, N., Promvonge, P., Thianpong, C., Promthaisong, P., & Skullong, S. (2023). Effect of louvered curved-baffles on thermohydraulic performance in heat exchanger tube. Case Studies in Thermal Engineering, 42, 102717. doi: 10.1016/j.csite.2023.102717
  • [15] Promvonge, P., Promthaisong, P., & Skullong, S. (2022). Heat transfer augmentation in solar heat exchanger duct with louverpunched V-baffles. Solar Energy, 248, 103–120. doi: 10.1016/j.solener.2022.11.009
  • [16] Promvonge, P., & Eiamsa-ard, S. (2006). Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator. Energy Conversion and Management, 47, 2867–2882.doi: 10.1016/j.enconman.2006.03.034
  • [17] Samruaisin, P., Rangsan M., Thianpong, C., Chuwattanakul, V., Maruyama, N., Hirota, M., & Eiamsa-ard, S. (2023). Enhanced Heat Transfer of a Heat Exchanger Tube Installed with V-Shaped Delta-Wing Baffle Turbulators. Energies, 16(13), 5237. doi:10.3390/en16135237
  • [18] Aydın Durmuş, A., Durmuş, A., & Esen, M. (2002). Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Applied Thermal Engineering, 22(3), 321‒332. doi: 10.1016/S1359-4311(01)00078-3
  • [19] Rahman, M.A., & Dhiman, S.K. (2023). Performance evaluation of turbulent circular heat exchanger with a novel flow deflectortype baffle plate. Journal of Engineering Research, 100105. doi:10.1016/j.jer.2023.100105
  • [20] Rahman, M.A., & Dhiman, S.K. (2023). Investigations of the turbulent thermo-fluid performance in a circular heat ex-changer with a novel flow deflector-type baffle plate. Bulletin of the Polish Academy of Sciences Technical Sciences, 71(4). doi:10.24425/bpasts.2023.145939
  • [21] Rahman, M.A. (2024). Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation. World Journal of Engineering.doi: 10.1108/WJE-06-2023-0233
  • [22] Rahman, M.A. (2023). Experimental Investigations on SinglePhase Heat Transfer Enhancement in an Air-To-Water Heat Exchanger with Rectangular Perforated Flow Deflector Baffle Plate. International Journal of Thermodynamics, 26(4), 31‒39. doi:10.5541/ijot.1285385
  • [23] Rahman, M.A. (2023). The influence of geometrical and operational parameters on thermofluid performance of discontinuous colonial self-swirl-inducing baffle plate in a tubular heat exchanger. Heat Transfer, 53(2), 328-345. doi: 10.1002/htj.22956
  • [24] Rahman, M.A. (2023). Thermo-fluid performance comparison of an in-line perforated baffle with oppositely oriented rectangularwing structure in turbulent heat exchanger. International Journal of Fluid Mechanics Research, 51(1), 15‒30. doi: 10.1615/InterJFluidMechRes.2023051418
  • [25] Rahman, M.A. (2024). The effect of triangular shutter type flow deflector perforated baffle plate on the thermofluid performance of a heat exchanger. Heat Transfer, 53(2), 939‒956. doi: 10.1002/htj.22981
  • [26] Habet, M.A., Ahmed, S.A., & Saleh, M.A. (2022). The effect of using staggered and partially tilted perforated baffles on heat transfer and flow characteristics in a rectangular channel. International Journal of Thermal Sciences, 174, 107422. doi: 10.1016/j.ijthermalsci.2021.107422
  • [27] Kumar, R., & Chandra, P. (2022). Experimental analysis to study the effect of perforated louvered strip-coiled spring insert on heat transfer performance in a double pipe heat exchanger. Heat Transfer, 51, 3035‒056. doi: 10.1002/htj.22435
  • [28] Maithani, R., & Kumar, A. (2020). Effect of helical perforated twisted tape parameters on thermal and hydrodynamic performance in heat exchanger circular tube. Heat and Mass Transfer, 56, 507–519. doi: 10.1007/s00231-019-02716-9
  • [29] Veerabhadrappa B.M., Nagaraj, P.B., Lalagi, G., & Rajesh, K. (2023). Effect of triangular perforated flat cone-shaped inserts on performance of double-tube heat exchanger. Physics of Fluids, 35(11), 115133. doi: 10.1063/5.0169821
  • [30] Coleman, H. W., & Steele, W. G. (2018). Experimentation, Validation, and Uncertainty Analysis for Engineers. John Wiley & Sons.
  • [31] Cao, Y.Z. (1998). Experimental Heat Transfer (pp. 120‒125). National Defence Industry Press, Beijing.
  • [32] Zhao, H., Wang, F., Wang, C., Chen, W., Yao, Z., Shi, X., & Zhong, Q. (2021). Study on the characteristics of horn-like vortices in an axial flow pump impeller under off-design conditions. Engineering Applications of Computational Fluid Mechanics,15(1), 1613–1628. doi: 10.1080/19942060.2021.1985615
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e411362-9d2f-4f00-aeef-42fafddd0509
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.