PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid genetic algorithm for bi-criteria objectives in scheduling process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scheduling of multiobjective problems has gained the interest of the researchers. Past many decades, various classical techniques have been developed to address the multiobjective problems, but evolutionary optimizations such as genetic algorithm, particle swarm, tabu search method and many more are being successfully used. Researchers have reported that hybrid of these algorithms has increased the efficiency and effectiveness of the solution. Genetic algorithms in conjunction with Pareto optimization are used to find the best solution for bi-criteria objectives. Numbers of applications involve many objective functions, and application of the Pareto front method may have a large number of potential solutions. Selecting a feasible solution from such a large set is difficult to arrive the right solution for the decision maker. In this paper Pareto front ranking method is proposed to select the best parents for producing offspring’s necessary to generate the new populations sets in genetic algorithms. The bi-criteria objectives minimizing the machine idleness and penalty cost for scheduling process is solved using genetic algorithm based Pareto front ranking method. The algorithm is coded in Matlab, and simulations were carried out for the crossover probability of 0.6, 0.7, 0.8, and 0.9. The results obtained from the simulations are encouraging and consistent for a crossover probability of 0.6.
Twórcy
  • JSS Academy of Technical Education, Uttarhalli-Kengeri Road, Bangalore-560060, India
Bibliografia
  • [1] Wang X., Zhang C., Gao L., Li P., A survey and future trend of study on multi-objective scheduling, 2008 Fourth International Conference on Natural Computation, 6, 382–391, 2008.
  • [2] Reddy B.S.P., Rao C.S.P., A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS, International Journal of Advanced Manufacturing Technology, 31, 5–6, 602–613, 2006.
  • [3] Gen M., Lin L., Multiobjective genetic algorithm for scheduling problems in manufacturing systems, Industrial Engineering & Management Systems, 11, 4, 310–330, 2012.
  • [4] Goldberg D.E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, Boston, 1989.
  • [5] Miettinen K., Nonlinear multiobjective optimization, Springer, New York, 1999.
  • [6] Srinivas N., Deb K., Multiobjective optimization using nondominated sorting in genetic algorithms, Journal of Evolutionary Computation, 2, 3, 221– 248, 1995.
  • [7] Li B., Li J., Tang K., Yao X., Many-objective evolutionary algorithms: a survey, ACM Computing Surveys, 48, 1, 13, 2015.
  • [8] Yang S., Li M., Liu X., Zheng J., #A grid-based evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 17, 5, 721–736, 2013.
  • [9] Deb K., Jain H., An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach. Part I: solving problems with box constraints, IEEE Transactions on Evolutionary Computation, 18, 4, 577–601, 2014.
  • [10] Zhang X., Tian Y., Jin Y., A knee point driven evolutionary algorithm for many-objective optimization, IEEE Transactions on Evolutionary Computation, 19, 6, 761–776, 2014.
  • [11] Zhang X., Tian Y., Cheng R., Jin Y., A decision variable clustering-based evolutionary algorithm for large-scale many objective optimization, IEEE Transactions on Evolutionary Computation, 99, 1–1, 2017, doi: 10. 1109/TEVC.2016.2600642.
  • [12] Li K., Deb K., Zhang Q., Kwong S., An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Transactions on Evolutionary Computation, 19, 694–716, 2015.
  • [13] Li M., Yang S., Liu X., Pareto or non-Pareto: bicriterion evolution in multi objective optimization, IEEE Transactions on Evolutionary Computation, 20, 5, 645–665, 2016.
  • [14] McClymont K. Keedwell E., Deductive sort and climbing sort: new methods for non-dominated sorting, IEEE Transactions on Evolutionary Computation, 20, 1, 1–26, 2012.
  • [15] Zhang X., Tian Y., Cheng R., Jin Y., An efficient approach to non-dominated sorting for evolutionary multi-objective optimization, IEEE Transactions on Evolutionary Computation, 19, 2, 201–213, 2015.
  • [16] Wang H., Yao X., Corner sort for Pareto-based many-objective optimization, IEEE Transactions on Cybernetics, 44, 1, 92–102, 2014.
  • [17] Zhang X., Tian Y., Jin Y., Approximate nondominated sorting for evolutionary many-objective optimization, Information Sciences, 369, 14–33, 2016.
  • [18] Chaudhari P.M, Dharaskar R.V., Thakare V.M., Computing the most significant solution from Pareto front obtained in multi-objective evolutionary, International Journal of Advanced Computer Sciences and Applications, 1, 4, 63–68, 2010.
  • [19] Tian Y., Wang H., Zhang X., Jin Y., Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization, Complex & Intelligent Systems, 3, 4, 247–263, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e3bfddc-9be2-41d5-a735-4925da270a5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.