Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article aimed to study the characteristics and mechanisms of 3D heat transfer through clothing involving the air gap. A three-dimensional finite volume method is used to obtain the coupled conductive, convective, and radiative heat transfer in a body-air-cloth microclimate system. The flow contours and characteristics of temperature, heat flux, and velocity have been obtained. The reason for the high flux and temperature regions was analyzed. Computational results show that the coupled effect of the air gap and the airflow between the skin and garment strongly influences the temperature and heat flux distribution. There are several high-temperature regions on the clothing and high heat flux regions on the body skin because the conductive heat flux can cross through the narrow air gap and reach the cloth surface easily. The high-speed cooling airflow brings about high forced convective heat flux, which will result in the temperature increase on the upper cloth surface. The radiative heat flux has a strong correlation with the temperature gradient between the body and clothing. But its proportion in the total heat flux is relatively small.
Czasopismo
Rocznik
Tom
Strony
89--95
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- School of Fashion Design and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- Shangyu College, Shaoxing University, Shaoxing, Zhejiang 312300, China
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
- [1] Kim, H., Kim, S. (2019). Heat storage and release characteristics of ceramic-imbedded woven fabric for emotional clothing. Autex Research Journal, 19(2), 165–172.
- [2] Su, Y., Li, R., Song, G., Li, J., Xiang, C. (2018). Modeling steam heat transfer in thermal protective clothing under hot steam exposure. International Journal of Heat and Mass Transfer, 120, 818–829.
- [3] Fonrana, P., Saiani, F. (2018). Thermo-physiological impact of different firefighting protective clothing ensembles in a hot environment. Textile Research Journal, 88(7), 744–753.
- [4] Su, Y., He, J., Li, J. (2017). An improved model to analyze radiative heat transfer in flame resistant fabrics exposed to low-level radiation. Textile Research Journal, 87(16), 1953–1967.
- [5] Bhattacharjee, D., Kothari, V. K. (2008). Prediction of thermal resistance of woven fabrics. Part II: Heat transfer in natural and forced convective environments, Journal of the Textile Institute, 99(5), 433–449.
- [6] Sawcyn, C. M., Torvi, D. A. (2009). Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics. Textile Research Journal, 79(7), 632–644.
- [7] Udayraj, W. F. (2018). A three-dimensional conjugate heat transfer model for thermal protective clothing. International Journal of Thermal Sciences, 130, 28–46.
- [8] Santos, M. S., Oliveira, D., Campos, J. B., Mayor, T. S. (2018). Numerical analysis of the flow and heat transfer in cylindrical clothing microclimates. Influence of the microclimate thickness ratio. International Journal of Heat & Mass Transfer, 117, 71–79.
- [9] Ghazy, A., Bergstrom, D. J. (2012). Numerical simulation of heat transfer in firefighters’ protective clothing with multiple air gaps during flash fire exposure. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 61(8), 569–593.
- [10] Udayraj, T. P., Das, A. (2017). Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: Effect of air gap orientation and body movement. International Journal of Heat and Mass Transfer, 108(3), 271–291.
- [11] Li, J. T., Lu, G. D., Liu, Z. (2013). Feature curve-net-based three-dimensional garment customization. Textile Research Journal, 83(5), 519–531.
- [12] Jia, J. H., Zhang, Y. J. (2020). Heat flux and pressure reduction using aerospike and counterfowing jet on complex hypersonic flow. International Journal of Aeronautical and Space Sciences, 21, 337–346.
- [13] Jia, J. H., Fu, D. B., He, Z. P., Yang, J., Hu, L. (2020). Hypersonic aerodynamic interference investigation for a two-stage-to-orbit model. Acta Astronautica, 168:138–145.
- [14] Metacomp Technologies Inc. (2013). CFD++ user manual. Agoura Hills, CA.
- [15] Michael, F. M. (2003). Radiative heat transfer (2nd ed.). Academic Press (San Diego). pp. 55–73.
- [16] Renato, M. C., Kleber, M. L., Marcos, F. C., Stavroula, B., Quaresma, J. N. N., et al. (2019). A review of hybrid integral transform solutions in fluid flow problems with heat or mass transfer and under Navier–Stokes equations formulation. Numerical Heat Transfer, Part B: Fundamentals, 4, 1–28.
- [17] Watmough, D. J., Oliver, R. (1968). Emissivity of human skin in the waveband between 2 micra and 6 micra. Nature, 219(5154), 622–624.
- [18] Sobera, M. P., Kleijn, C. R., Van den Akker, H. E. A., Brasser, P. (2003). Convective heat and mass transfer to a cylinder sheathed by a porous layer. AIChE Journal, 49, 3018–3028.
- [19] Sobera, M. P., Kleijn, C. R., Van den Akker, H. E. A., Brasser, P. (2004). A multi-scale numerical study of the flow, heat, and mass transfer in protective clothing. Lecture Notes in Computer science, 3039, 637–644.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e35fdc6-390f-4d6c-8fe7-b99062791aef