PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of zirconium doping on the mechanical properties of W1−x Zr x B2 on the basis of first‑principles calculations and magnetron sputtered films

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Potentially superhard polymorphs, hP6-P6/mmc-WB and hP3-P6/mmm-WB, were thoroughly analyzed with zirconium doping in the range of x=0-25%, within the framework of the first-principles density functional theory, from both a structural and a mechanical point of view. The obtained results were subsequently compared with the properties of material deposited by the magnetron sputtering method. All predicted structures are mechanically and thermodynamically stable. Theoretical calculations suggest a decrease in hardness and fracture toughness of the hP6 phase with zirconium doping but no such effect on the hP3 phase. It was observed that an additional defect in the analyzed structure significantly weakens the hP6 phase but strengthens the hP3 phase. The deposited films are characterized by greater hardness but lower fracture toughness. The results of experiments show that not only is solid solution hardening responsible for strengthening the predicted new material but also the change in microstructure, the Hall–Petch effect and vacancies.
Rocznik
Strony
art. no. e193, 2022
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
  • Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
Bibliografia
  • [1] Yeung MT, Mohammadi R, Kaner RB. Ultraincompressible, super-hard materials. Annu Rev Mater Res. 2016;46(1):465–85. https://doi.org/10.1146/annurev-matsci-070115-032148.
  • [2] Debnárová S, Souček P, Vašina P, Zábranský L, Buršíková V, Mirzaei S, Pei YT. The tribological properties of short range ordered W-B-C protective coatings prepared by pulsed magnetron sputtering. Surf Coat Technol. 2019;357:364–71. https://doi.org/10.1016/j.surfcoat.2018.10.026.
  • [3] Windsor CG, Astbury JO, Morgan JG, Wilson CL, Humphry-Baker SA. Activation and transmutation of tungsten boride shields in a spherical tokamak. Nucl Fusion. 2022;62(3): 036009. https://doi.org/10.1088/1741-4326/ac4866.
  • [4] Akopov G, Yeung MT, Kaner RB. Rediscovering the crystal chemistry of borides. Adv Mater. 2017;29(21):1604506. https://doi.org/10.1002/adma.201604506.
  • [5] Fuger C, Moraes V, Hahn R, Bolvardi H, Polcik P, Riedl H, Mayrhofer PH. Influence of Tantalum on phase stability and mechanical properties of WB2 . MRS Commun. 2019;9(1):375–80. https://doi.org/10.1557/mrc.2019.5.
  • [6] Psiuk R, Milczarek M, Jenczyk P, Denis P, Jarza̧bek DM, Bazarnik P, Pisarek M, Mościcki T. Improved mechanical properties of W-Zr-B coatings deposited by hybrid RF magnetron-PLD method. Appl Surf Sci. 2021;570: 151239. https://doi.org/10.1016/j.apsusc.2021.151239.
  • [7] Mościcki T, Psiuk R, Radziejewska J, Wiśniewska M, Garbiec D. Properties of spark plasma sintered compacts and magnetron sputtered coatings made from Cr, Mo, Re and Zr alloyed tungstendiboride. Coatings. 2021;11:11.
  • [8] Fuger C, Schwartz B, Wojcik T, Moraes V, Weiss M, Limbeck A, Macauley CA, Hunold O, Polcik P, Primetzhofer D, Felfer P, Mayrhofer PH, Riedl H. Influence of Ta on the oxidation resistance of WB2−z coatings. J Alloy Compd. 2021;864: 158121. https://doi.org/10.1016/j.jallcom.2020.158121.
  • [9] Mościcki T, Chrzanowska-Giżyńska J, Psiuk R, Denis P, Mulewska K, Kurpaska L, Chmielewski M, Wiśniewska M, Garbiec D. Thermal and mechanical properties of (W, Zr)B2−z coatings deposited by RF magnetron sputtering method. Int J Refract Metal Hard Mater. 2022;105: 105811. https://doi.org/10.1016/j.ijrmhm.2022.105811.
  • [10] Moraes V, Riedl H, Fuger C, Polcik P, Bolvardi H, Holec D, Mayrhofer PH. Ab initio inspired design of ternary boride thin films. Sci Rep. 2018;8:9288. https:// doi. org/ 10. 1038/s41598-018-27426-w.
  • [11] Cheng X-Y, Chen X-Q, Li D-Z, Li Y-Y. Computational materials discovery: the case of the W-B system. Acta Crystallogr C. 2014;70(2):85–103. https://doi.org/10.1107/S2053229613027551.
  • [12] Euchner H, Mayrhofer PH, Riedl H, Klimashin FF, Limbeck A, Polcik P, Kolozsvari S. Solid solution hardening of vacancy stabilized TixW1−xB2 . Acta Mater. 2015;101:55–61. https://doi.org/10.1016/j.actamat.2015.08.048.
  • [13] Maździarz M, Mościcki T. Structural, mechanical and optical properties of potentially superhard WBx polymorphs from first principles calculations. Mater Chem Phys. 2016;179:92–102. https://doi.org/10.1016/j.matchemphys.2016.05.014.
  • [14] Fuger C, Hahn R, Zauner L, Wojcik T, Weiss M, Limbeck A, Hunold O, Polcik P, Riedl H. Anisotropic super-hardness of hexagonal WB2 ±z thin films. Mater Res Lett. 2022;10(2):70–7. https://doi.org/10.1080/21663831.2021.2021308.
  • [15] Chang YA, Pike LM, Liu CT, Bilbrey AR, Stone DS. Correlation of the hardness and vacancy concentration in FeAl. Intermetallics. 1993;1(2):107–15. https://doi.org/10.1016/0966-9795(93)90028-T.
  • [16] Zhu X, Gao X, Song H, Han G, Lin D-Y. Effects of vacancies on the mechanical properties of zirconium: an ab initio investigation. Mater Des. 2017;119:30–7. https://doi.org/10.1016/j.matdes.2017.01.060.
  • [17] Pan Y, Chen S, Lin Y. Vacancy-induced elastic properties and hardness of CrB4 : A DFT calculation. Int J Mod Phys B. 2017;31(13):1750096. https://doi.org/10.1142/S0217979217500965.
  • [18] Gu X, Liu C, Guo H, Zhang K, Chen C. Sorting transition-metal diborides: new descriptor for mechanical properties. Acta Mater. 2021;207: 116685. https:// doi. org/ 10. 1016/j. actam at. 2021.116685.
  • [19] Maździarz M, Mościcki T. New zirconium diboride polymorphs—first-principles calculations. Materials. 2020;13:13. https://doi.org/10.3390/ma13133022.
  • [20] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:864–71. https://doi.org/10.1103/PhysRev.136.B864.
  • [21] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:1133–8. https://doi.org/10.1103/PhysRev.140.A1133.
  • [22] Gonze X, Jollet F, Araujo FA, Adams D, Amadon B, Applencourt T, Audouze C, Beuken J-M, Bieder J, Bokhanchuk A, Bousquet E, Bruneval F, Caliste D, Côté M, Dahm F, Pieve FD, Delaveau M, Gennaro MD, Dorado B, Espejo C, Geneste G, Genovese L, Gerossier A, Giantomassi M, Gillet Y, HamannDR, He L, Jomard G, Janssen JL, Roux SL, Levitt A, Lherbier A, Liu F, Lukačević I, Martin A, Martins C, Oliveira MJT, Poncé S, Pouillon Y, Rangel T, Rignanese G-M, Romero AH, Rousseau B, Rubel O, Shukri AA, Stankovski M, Torrent M, Setten MJV, Troeye BV, Verstraete MJ, Waroquiers D, Wiktor J, Xu B, Zhou A, Zwanziger JW. Recent developments in the ABI-NIT software package. Comput Phys Commun. 2016;205:106–31. https://doi.org/10.1016/j.cpc.2016.04.003.
  • [23] Gonze X, Amadon B, Antonius G, Arnardi F, Baguet L, Beuken J-M, Bieder J, Bottin F, Bouchet J, Bousquet E, Brouwer N, Bruneval F, Brunin G, Cavignac T, Charraud J-B, Chen W, Côté M, Cottenier S, Denier J, Geneste G, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann DR, Hautier G, He X, Helbig N, Holzwarth N, Jia Y, Jollet F, Lafargue-Dit-Hauret W, Lejaeghere K, Marques MAL, Martin A, Martins C, Miranda HPC, Naccarato F, Persson K, Petretto G, Planes V, Pouillon Y, Prokhorenko S, Ricci F, Rignanese G-M, Romero AH, Schmitt MM, Torrent M, van Setten MJ, Troeye BV, Verstraete MJ, Zérah G, Zwanziger JW. The ABINIT project: impact, environment and recent developments. Comput Phys Commun. 2020;248:107042. https://doi.org/10.1016/j.cpc.2019.107042.
  • [24] Martin A, Torrent M, Caracas R. Projector augmented-wave formulation of response to strain and electric-field perturbation within density functional perturbation theory. Phys Rev B. 2019;99: 094112. https://doi.org/10.1103/PhysRevB.99.094112.
  • [25] Zhao E, Meng J, Ma Y, Wu Z. Phase stability and mechanical properties of tungsten borides from first principles calculations. Phys Chem Chem Phys. 2010;12:13158–65. https://doi.org/10.1039/C004122J.
  • [26] Bloch F. Bemerkung zur Elektronentheorie des Ferromagnetis-mus und der elektrischen Leitfähigkeit. Z Phys. 1929;57:545–55. https://doi.org/10.1007/BF01340281.
  • [27] Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45:13244–9. https://doi.org/10.1103/PhysRevB.45.13244.
  • [28] Jollet F, Torrent M, Holzwarth N. Generation of projector augmented-wave atomic data: a 71 element validated table in the XML format. Comput Phys Commun. 2014;185(4):1246–54. https://doi.org/10.1016/j.cpc.2013.12.023.
  • [29] Qi C, Jiang Y, Liu Y, Zhou R. Elastic and electronic properties of XB2 (X=V, Nb, Ta, Cr, Mo, and W) with AlB2 structure from first principles calculations. Ceram Int. 2014;40(4):5843–51. https://doi.org/10.1016/j.ceramint.2013.11.026.
  • [30] Maździarz M, Mościcki T. Structural, mechanical, optical, thermodynamical and phonon properties of stable ReB2 polymorphs from density functional calculations. J Alloy Compd. 2016;657:878–88. https:// doi. org/ 10. 1016/j. jallc om. 2015. 10.133.
  • [31] Hamann DR, Wu X, Rabe KM, Vanderbilt D. Metric tensor formulation of strain in density-functional perturbation theory. Phys Rev B. 2005;71: 035117. https://doi.org/10.1103/PhysR evB.71.035117.
  • [32] Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A. 1952;65(5):349–54. https://doi.org/10.1088/0370-1298/65/5/307.
  • [33] Maździarz M, Gajewski M. Estimation of isotropic hyperelasticity constitutive models to approximate the atomistic simulation data for aluminium and tungsten monocrystals. Comput Model Eng Sci. 2015;105(2):123–50. https://doi.org/10.3970/cmes.2015.105.123.
  • [34] Grimvall G, Magyari-Köpe B, Ozoliņš V, Persson KA. Lattice instabilities in metallic elements. Rev Mod Phys. 2012;84:945–86. https://doi.org/10.1103/RevModPhys.84.945.
  • [35] Maździarz M. Comment on ‘The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals’. 2D Mater. 2019;6(4): 048001. https://doi.org/10.1088/2053-1583/ab2ef3.
  • [36] Mazhnik E, Oganov AR. Application of machine learning methods for predicting new superhard materials. J Appl Phys. 2020;128(7): 075102. https://doi.org/10.1063/5.0012055.
  • [37] Pugh SFXCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinburgh Dublin Philos Mag J Sci. 1954;45(367):823–43. https://doi.org/10.1080/14786440808520496.
  • [38] Musil J. Flexible hard nanocomposite coatings. RSC Adv. 2015;5:60482–95. https://doi.org/10.1039/C5RA09586G.
  • [39] Garbiec D, Wiśniewska M, Psiuk R, Denis P, Levintant-Zayonts N, Leshchynsky V, Rubach R, Mościcki T. Zirconium alloyed tungsten borides synthesized by spark plasma sintering. Arch Civ Mech Eng. 2021;21(1):37. https:// doi. org/ 10. 1007/s43452-021-00188-5.
  • [40] Laugier MT. New formula for indentation toughness in ceramics. J Mater Sci Lett. 1987;6(3):355–6. https://doi.org/10.1007/BF01729352.
  • [41] Smolik J, Kacprzyńska-Gołacka J, Sowa S, Piasek A. The analysis of resistance to brittle cracking of tungsten doped TiB2 coatings obtained by magnetron sputtering. Coatings. 2020;10:9. https://doi.org/10.3390/coatings10090807.
  • [42] Euchner H, Mayrhofer PH. Designing thin film materials—ternary borides from first principles. Thin Solid Films. 2015;583:46–9. https://doi.org/10.1016/j.tsf.2015.03.035.
  • [43] Nye J. Physical properties of crystals: their representation by tensors and matrices. United Kingdom: Oxford University Press; 1957.
  • [44] Kroker M, Souček P, Šlapanská M, Sochora V, Jílek M, Vašina P. Predicting the composition of W-B-C coatings sputtered from industrial cylindrical segmented target. Surf Coat Technol. 2022;438: 128411. https://doi.org/10.1016/j.surfcoat.2022.128411.
  • [45] Mościcki T, Psiuk R, Słomińska H, Levintant-Zayonts N, Garbiec D, Pisarek M, Bazarnik P, Nosewicz S, Chrzanowska-Giżyńska J. Influence of overstoichiometric boron and titanium addition on the properties of rf magnetron sputtered tungsten borides. Surf Coat Technol. 2020;390: 125689. https://doi.org/10.1016/j.surfcoat.2020.125689.
  • [46] Bakhit B, Palisaitis J, Wu Z, Sortica MA, Primetzhofer D, Persson K, Rosen J, Hultman L, Petrov I, Greene JE, Greczynski G. Age hardening in superhard ZrB2-rich Zr1−xTaxBy thin films. Scripta Mater. 2021;191:120–5. https:// doi. org/ 10. 1016/j. scrip tamat.2020.09.026.
  • [47] Wagner A, Holec D, Mayrhofer PH, Bartosik M. Enhanced fracture toughness in ceramic superlattice thin films: On the role of coherency stresses and misfit dislocations. Mater Des. 2021;202: 109517. https://doi.org/10.1016/j.matdes.2021.109517.
  • [48] Ordan’yan SS, Boldin AA, Suvorov SS, Smirnov VV. Phase diagram of the W 2B5-ZrB2 system. Inorg Mater. 2005;41(3):232–4. https://doi.org/10.1007/s10789-005-0114-0.
  • [49] Thornton JA. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol. 1974;11(4):666–70. https://doi.org/10.1116/1.1312732.
  • [50] Moraes V, Fuger C, Paneta V, Primetzhofer D, Polcik P, Bolvardi H, Arndt M, Riedl H, Mayrhofer PH. Substoichiometry and tantalum dependent thermal stability of 𝛼-structured W-Ta-B thin films. Scripta Mater. 2018;155:5–10. https://doi.org/10.1016/j.scriptamat.2018.06.005.
  • [51] Powder Diffraction File 04-007-1000, International Center for Diffraction Data2011.
  • [52] Powder Diffraction File 000-34-0423 International Center for Diffraction Data2011.
  • [53] Powder Diffraction File 04-003-6624, International Center for Diffraction Data2011.
  • [54] Barna PB, Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films. 1998;317(1):27–33. https://doi.org/10.1016/S0040-6090(97)00503-8.
  • [55] Mayrhofer PH, Mitterer C, Wen JG, Greene JE, Petrov I. Self-organized nanocolumnar structure in superhard TiB2 thin films. Appl Phys Lett. 2005;86(13): 131909. https://doi.org/10.1063/1.1887824.
  • [56] Bakhit B, Engberg DLJ, Lu J, Rosen J, Högberg H, Hultman L, Petrov I, Greene JE, Greczynski G. Strategy for simultaneously increasing both hardness and toughness in ZrB2-rich Zr1−x Ta x Bythin films. J Vacuum Sci Technol A. 2019;37(3): 031506. https://doi.org/10.1116/1.5093170.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e35d045-d141-483d-9451-e46f6bfc8541
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.