PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flotation separation of dravite from phlogopite using a combination of anionic/nonionic surfactants

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the effect of a mixture of anionic collector (sodium oleate)/ non-ionic surfactant (sorbitan monooleate) on the flotation separation of dravite from the main associated gangue phlogopite was investigated in comparison of using single sodium oleate as a collector. The flotation experiments were conducted on pure single minerals of dravite and phlogopite. The flotation results demonstrated that adding sorbitan monooleate to Na-oleate at a dose of 5.64 kg/Mg Na-oleate with 0.43 kg/Mg sorbitan monooleate in the presence of methyl isobutyl carbinol (MIBC) as a frother (0.12 Kg/Mg) at pH 7.7 improved the flotation efficiency of dravite from 73.5% by using sodium oleate as a single collector to 96.9% using the mixture. Whereas, the flotation recovery of phlogopite in the same conditions reached 26.3%. The zeta potential measurements and Fourier transform infrared (FTIR) spectroscopy analysis were also implemented to investigate and predict the mechanism of collector adsorption on the mineral surfaces. As a result of flotation experiments and the zeta potential measurements of FTIR analysis, high chemisorption of the mixed collector on the surface of dravite was obtained, on the contrary, a little amount of the collector mixture adsorbed on the phlogopite surface.
Rocznik
Strony
87--95
Opis fizyczny
Bibliogr. 29 poz., rys. kolor.
Twórcy
  • Nuclear Materials Authority, Cairo, Egypt
Bibliografia
  • ABDEL KHALEK, M., 2001. A separation of dolomite from phosphate minerals by flotation with a new amphoteric surfactant as collector. Mineral Processing and Extractive Metallurgy, 110, 89-93.
  • ANTON, B., 2002. Infrared spectroscopy of micas. Reviews in Mineralogy and Geochemistry, 46 (1), 351-369.
  • BAI, Y., CAIXIA, L., WANGFANG, S., HONGYUN, A., JINGYU, Z., 2019. Application of sodium dodecyl glycinate to the flotation of deslimed molybdenum tailings. Physicochem. Probl. Miner. Process., 5 (55), 1120-1131.
  • CHENG, W., HOLTHAM, N., TAM, T., 1993. Froth flotation of monazite and xenotime, Miner. Eng., 6,.341–351.
  • COATES, J., 2000. Interpretation of infrared spectra, a Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 10815-10837.
  • FERNANDO, P., 2017. Influence of froth height on column flotation of kaolin ore, Minerals, 7, 235.
  • FUERSTENAU, 2001. Flotation (Volume 1 and 2) Metallurgy Industry Press, China.
  • HANYU, W., SHUHAN, L., CHENG, X., CHEN, J., YIZHE J., DINGFANG, X., MINGLIANG, K., 2020. Comparative study of strontium adsorption on muscovite, biotite and phlogopite, Journal of Environmental Radioactivity, 225, 106446.
  • HAWTHORNE, F. C. and HENRY, D.J., 1999. Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201-215
  • HENRY, D., DUTROW, B., 1996. Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy and geochemistry, Mineral Soc Am Chantilly, Virginia, 33, 503–557.
  • HOUCHIN, M.,1986. Surface studies on aqueous suspensions of tourmaline (dravite), Colloids and Surfaces, 19, 61-82.
  • JIANG, K., SUN, T.H., SUN, L.N., LI, H.B., 2006. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline, Journal of Environmental Sciences, 18 (6), 1221–1225.
  • KOSMULSKI, M., 2009. Surface charging and points of zero charge, 145, 1092.
  • LEONARD, D.T., YU, M.H., KIM, C.H., LEE, Y.C., LEE, D.H., KIM, D.W., KIM, C.S., 2011. Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline, Applied Thermal Engineering, 31, 2025–2031.
  • MATKOVICH, V. I., 1977. Boron and refractory borides, © by Springer-Verlag Berlin Heidel berg, New York, Softcover reprint of the hardcover 1 st edition. DOI: 10.1007/978-3-642-66620-9
  • MEHROTRA, S.P. and SHEKHAR, R., 1995. Flotation, Electrokinetic and FT-IR studies of mixed anionic/cationic collector in muscovite-biotite system; Mineral processing: Recent Advances and future trends.
  • FAWZY, M.M., 2018. Surface characterization and froth flotation of fergusonite from Abu Dob pegmatite using a combination of anionic and nonionic collectors, Physicochem. Probl. Miner. Process., 54(3), 677-687.
  • FAWZY, M.M., 2021. Separation of fine beryl from quartz via magnetic carriers by the aiding of non-ionic surfactant, Physicochem. Probl. Miner. Process., 57(2), 14-23.
  • POPE, I., SUTTON, I., 1973. The Correlation between froth flotation response and collector adsorption from aqueous solution, Part I. Titanium dioxide and ferric oxide conditioned in oleate solutions, Powder Technology, 7, 271–279.
  • QUN, X., VASUDEVAN, SOMASUNDARAN, P., 1991. Adsorption of anionic-nonionic and cationic-nonionic surfactant mixtures on kaolinite. Jou. of Colloid and Interface Sci. 142, (2), 528-534.
  • ROBERT, J.L., FUCHS, Y., GOURDANT, J.P., 1996. Characterization of tourmalines by FTIR absorption spectrometry, Physics and Chemistry of Mineral, 23, (4/5), 213-218.
  • SCALES, P.J., THOMAS, W., and FENNELL EVANST, D., 1988. The zeta potential of muscovite mica: counterion complexation by a macrocyclic ligand, Journal of Colloid and Interface Science, 124, (2), 391-395.
  • SHEN, L., HU, J., ZHU, X., and ZHANG, W., 2011. Identification of natural tourmaline and similar gems by diffuse reflection fourier transform middle infrared spectrum, Advanced Materials Research, 177, 610-612.
  • SOMASUNDARAN, P., ANANTHAPADMANANTHAN, P., 1986. Advances in Mineral Processing, Littleton: Society of Mining Engineers of AIME.
  • WANG, Y., YEH, J.T., YUE, T.J., YAO, R.X., SHEN, X.Y., 2006., Surface modification of superfine tourmaline powder with titanate coupling agent, Colloid Polymer Science, 284, 1465–1470.
  • WANG, L., YUEHUA, H., JIAPENG, L., YONGSHENG, S., WEI, S., 2015. Flotation and adsorption of muscovite using mixed cationic–nonionic surfactants as collector, Powder Technology, 276, 26–33.
  • XIAOHUI, Z. and RUIHUA, W., 2013. Study on zeta potential of micron-size tourmaline powders, Advanced Materials Research, 785-786, 395-399.
  • YINGMO, H., XUE, Y., 2012. The surface organic modification of tourmaline powder by span-60 and its composite, Applied Surface Science, 258, 7540– 7545.
  • ZHIFENG, L., YE, G., SHUJUAN, D., 2013. Research on tourmaline of Huapi ditch, Yichun City, Heilongjiang province, Advanced Materials Research, 826, 237-243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e332711-d864-4442-89ad-3103def15559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.