Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ różnych środków odladzających zawierających jony chlorków na odporność betonu drogowego na wykruszanie i na głębokość ich wnikania
Języki publikacji
Abstrakty
The use of chloride-based de-icers belongs to the most common road winter maintenance measures applied to prevent dangerous driving conditions. Chloride-based de-icers are the most frequently used worldwide. The essential difficulty with de-icers is their detrimental effect on concrete, other components of the road infrastructure and on vehicles. The interaction of various individual chloride salts with concrete is described in the paper; the experimental programme was focused on evaluation of the most frequently applied chloride-based de-icers in terms of damage to the air-entrained concrete used for highway construction. Three individual salts – NaCl, CaCl2, MgCl2 – and one blend (NaCl + CaCl2) were used. Their effect on concrete was investigated in terms of surface scaling during freezing-thawing cycles, residual mechanical properties and final ingress of chloride ions. Calcium chloride exhibited the most detrimental effect on the studied concrete.
Użycie środków odladzających zawierających chlorki należy do najpopularniejszych zabiegów utrzymaniowych mających na celu zapewnienie bezpieczeństwa ruchu w zimie. Środki zawierające chlorki stanowią najczęściej stosowaną grupę środków odladzających na świecie. Podstawowym problemem związanym z użyciem takich środków jest ich negatywny wpływ na beton, inne elementy infrastruktury drogowej oraz pojazdy. W niniejszym artykule przedstawiono wpływ różnych soli chlorkowych na beton; badania poświęcone były ocenie najpopularniejszych środków odladzających zawierających chlorki w zakresie ich niszczącego wpływu na beton napowietrzony stosowany w nawierzchniach drogowych. Zbadano trzy sole – NaCl, CaCl2, MgCl2 – oraz jedną mieszankę (NaCl + CaCl2). Ich wpływ na beton analizowany był poprzez badanie łuszczenia powierzchniowego po cyklach zamrażania i rozmrażania, zmiany wytrzymałości próbek oraz głębokości wnikania jonów chlorkowych. Najsilniejszy niszczący wpływ na badany beton wykazał chlorek wapnia.
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--64
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Czech Technical University in Prague, Faculty of Civil Engineering, Thakurova 7, 166 29, Prague, Czech Republic
autor
- Czech Technical University in Prague, Faculty of Civil Engineering, Thakurova 7, 166 29, Prague, Czech Republic
Bibliografia
- 1. Wang K., Nelsen D.E., Nixon W.A.: Damaging effects of de-icing chemicals on concrete materials. Cement and Concrete Composites, 28, 2, 2006, 173-188, DOI: 10.1016/j.cemconcomp.2005.07.006
- 2. Dang Y., Xie N., Kessel A., McVey E., Pace A., Shi X.: Accelerated laboratory evaluation of surface treatments for protecting concrete bridge decks from salt scaling. Construction and Building Materials, 55, 2014, 128-135, DOI: 10.1016/j.conbuildmat.2014.01.014
- 3. Lee B.D., Choi Y.S., Kim Y.G., Kim I.S., Yang E.I.: A comparison study of performance and environmental impacts of chloride-based de-icers and eco-label certified de-icers in South Korea. Cold Regions Science and Technology, 143, 2017, 43-51, DOI: 10.1016/j.coldregions.2017.08.010
- 4. Shi X., Fay L., Peterson M.M., Berry M., Mooney M.: A FESEM/EDX investigation into how continuous de-icer exposure affects the chemistry of Portland cement concrete. Construction and Building Materials, 25, 2, 2011, 957-966, DOI: 10.1016/j.conbuildmat.2010.06.086
- 5. Liu Z., Hansen W.: Freezing characteristics of air-entrained concrete in the presence of de-icing salt. Cement and Concrete Research, 74, 2015, 10-18, DOI: 10.1016/j.cemconres.2015.03.015
- 6. Pruckner F., Gjřrv O.: Effect of CaCl2 and NaCl additions on concrete corrosivity. Cement and Concrete Research, 34, 7, 2004, 1209-1217, DOI: 10.1016/j.cemconres.2003.12.015
- 7. Xu J., Jiang L., Wang W., Jiang Y.: Influence of CaCl2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete. Construction and Building Materials, 25, 2, 2011, 663-669, DOI: 10.1016/j.conbuildmat.2010.07.023
- 8. Shi X., Fortune K., Fay L., Smithlin R., Cross D., Yang Z., Wu J.: Longevity of corrosion inhibitors and performance of anti-icing products after pavement application: A case study. Cold Regions Science and Technology, 83-84, 2012, 89-97, DOI: 10.1016/j.coldregions.2012.06.009
- 9. Shi X., Fay L., Yang Z., Nguyen T.A., Liu Y.: Corrosion of De-icers to Metals in Transportation Infrastructure: Introduction and Recent Developments. Corrosion Reviews, 27, 1-2, 2009, 23-52, DOI: 10.1515/CORRREV.2009.27.1-2.23
- 10. Spragg R.P., Castro J., Li W., Pour-Ghaz M., Huang P.T., Weiss J.: Wetting and drying of concrete using aqueous solutions containing de-icing salts. Cement and Concrete Composites, 33, 5, 2011, 535-542, DOI: 10.1016/j.cemconcomp.2011.02.009
- 11. Egüez Álava H., De Belie N., De Schutter G.: Proposed mechanism for the formation of oxychloride crystals during sodium chloride application as a de-icer salt in carbonated concrete. Construction and Building Materials, 109, 2016, 188-197, DOI: 10.1016/j.conbuildmat.2016.01.047
- 12. Tian W., Han N.: Pore characteristics (>0.1 mm) of non-air entrained concrete destroyed by freeze-thaw cycles based on CT scanning and 3D printing. Cold Regions Science and Technology, 151, 2018, 314-322, DOI: 10.1016/j.coldregions.2018.03.027
- 13. Suprenant B.A.: Freezing concrete as a construction practice. Cold Regions Science and Technology, 11, 2, 1985, 195-197, DOI: 10.1016/0165-232X(85)90018-7
- 14. Bager D.H., Sellevold E.J.: Ice formation in hardened cement paste, Part II - drying and resaturation on room temperature cured pastes. Cement and Concrete Research, 16, 6, 1986, 835-844, DOI: 10.1016/0008-8846(86)90006-2
- 15. Shang H., Song Y., Ou J.: Behaviour of air-entrained concrete after freeze-thaw cycles. Acta Mechanica Solida Sinica. 22, 3, 2009, 261-266, DOI: 10.1016/S0894-9166(09)60273-1
- 16. Farnam Y., Wiese A., Bentz D., Davis J., Weiss J.: Damage development in cementitious materials exposed to magnesium chloride de-icing salt. Construction and Building Materials, 93, 2015, 384-392, DOI: 10.1016/j.conbuildmat.2015.06.004
- 17. Qiao C., Suraneni P., Weiss J.: Damage in cement pastes exposed to NaCl solutions. Construction and Building Materials, 171, 2018, 120-127, DOI: 10.1016/j.conbuildmat.2018.03.123
- 18. Brown P., Bothe J., Jr.: The system CaO-Al2O3-CaCl2-H2O at 23±2 °C and the mechanisms of chloride binding in concrete. Cement and Concrete Research, 34, 9, 2004, 1549-1553, DOI: 10.1016/j.cemconres.2004.03.011
- 19. Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Glinicki M.A., Gibas K.: Resistance of selected aggregates from igneous rocks to alkali-silica reaction: verification. Roads and Bridges - Drogi i Mosty, 18, 1, 2019, 67-83, DOI: 10.7409/rabdim.019.005
- 20. Rajabipour F., Giannini E., Dunant C., Ideker J.H., Thomas M.D.D.: Alkali-silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 76, 2015, 130-146, DOI: 10.1016/j.cemconres.2015.05.024
- 21. Csizmadia J., Balázs G., Tamás F.D.: Chloride ion binding capacity of aluminoferrites. Cement and Concrete Research, 31, 4, 2001, 577-588, DOI: 10.1016/S0008-8846(01)00458-6
- 22. Qiao C., Suraneni P., Weiss J.: Flexural strength reduction of cement pastes exposed to CaCl2 solutions, Cement and Concrete Composites, 86, 2018, 297-305, DOI: 10.1016/j.cemconcomp.2017.11.021
- 23. Valenza J.J., Vitousek S., Scherer G.W.: Expansion of hardened cement paste in saline solutions, creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, London, 2005, 207-212.
- 24. Dąbrowska M., Giegiczny Z.: Chemical resistance of mortars made of cements with calcerous fly ash. Roads and Bridges - Drogi i Mosty, 12, 2, 2013, 131-146, DOI: 10.7409/rabdim.013.010
- 25. Suryavanshi A.K., Narayan Swamy R.: Stability of Friedel’s salt in carbonated concrete structural elements. Cement and Concrete Research, 26, 5, 1996, 729-741, DOI: 10.1016/S0008-8846(96)85010-1
- 26. Sutter L., Peterson K., Touton S., Van Dam T., Johnston D.: Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution. Cement and Concrete Research, 36, 8, 2006, 1533-1541, DOI: 10.1016/j.cemconres.2006.05.022
- 27. Peterson K., Julio-Betancourt G., Sutter L., Hooton R.D., Johnston D.: Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5°C. Cement and Concrete Research, 45, 2013, 79-90, DOI: 10.1016/j.cemconres.2013.01.001
- 28. Santagata M.C., Collepardi M.: The effect of CMA deicers on concrete properties. Cement and Concrete Research, 30, 9, 2000, 1389-1394, DOI: 10.1016/S0008-8846(00)00334-3
- 29. Bassuoni M.T., Rahman M.M.: Response of concrete to accelerated physical salt attack exposure. Cement and Concrete Research, 79, 2016, 395-408, DOI: 10.1016/j.cemconres.2015.02.006
- 30. Balonis M.: Thermodynamic modelling of temperature effects on the mineralogy of Portland cement systems containing chloride. Cement and Concrete Research, 120, 2019, 66-76, DOI: 10.1016/j.cemconres.2019.03.011
- 31. EN 206: Concrete, performance, production and conformity, The Czech Republic (2018)
- 32. CSN 731326: Resistance of cement concrete surface to water and defrosting chemicals, The Czech Republic (1984)
- 33. CSN EN 12390-3: Testing hardened concrete - Part 3: Compressive strength of test specimens, The Czech Republic (2009)
- 34. CSN EN 12390-6: Testing hardened concrete - Part 6: Tensile splitting strength of test specimens, The Czech Republic (2009)
- 35. Liu J., Miao C., Chen C., Liu J., Cui G.: Effect and mechanism of controlled permeable formwork on concrete water adsorption. Construction and Building Materials, 39, 2013, 129-133, DOI; 10.1016/j.conbuildmat.2012.05.005
- 36. Chan S.Y., Ji X.: Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes. Cement and Concrete Composites, 21, 4, 1999, 293-300, DOI: 10.1016/s0958-9465(99)00010-4
- 37. Claisse P.A.: Surface tests to determine transport properties of concrete - I: the tests, in: Transport Properties of Concrete, Elsevier, 2014, 26-42, DOI: 10.1533/9781782423195.26
- 38. Ghazy A., Bassuoni M.T.: Resistance of concrete to different exposures with chloride-based salts. Cement and Concrete Research, 101, 2017, 144-158, DOI: 10.1016/j.cemconres.2017.09.001
- 39. Bernal J., Fenaux M., Moragues A., Reyes E., Gálvez J.C.: Study of chloride penetration in concretes exposed to high-mountain weather conditions with presence of deicing salts. Construction and Building Materials, 127, 2016, 971-983, DOI: 10.1016/j.conbuildmat.2016.09.148
- 40. Suraneni P., Monical J., Unal E., Farnam Y., Weiss J.: Calcium Oxychloride Formation Potential in Cementitious Pastes Exposed to Blends of Deicing Salt. ACI Materials Journal, 114, 4, 2017, DOI: 10.14359/51689607
- 41. Otieno M., Beushausen H., Alexander M.: Chloride-induced corrosion of steel in cracked concrete - Part I: Experimental studies under accelerated and natural marine environments. Cement and Concrete Research, 79, 2016, 373-385, DOI: 10.1016/j.cemconres.2015.08.009
- 42. Hájková K., Šmilauer V., Jendele L., Červenka J.: Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Engineering Structures, 174, 2018, 768-777, DOI: 10.1016/j.engstruct.2018.08.006
- 43. Gao Y., Zhang J., Zhang S., Zhang Y.: Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment. Construction and Building Materials, 140, 2017, 485-495, DOI: 10.1016/j.conbuildmat.2017.02.134
- 44. Kwon S.J., Na U.J., Park S.S., Jung S.H.: Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion. Structural Safety, 31, 1, 2009, 75-83, DOI: 10.1016/j.strusafe.2008.03.004
- 45. Shi J., Ming J., Sun W., Zhang Y.: Corrosion performance of reinforcing steel in concrete under simultaneous flexural load and chlorides attack. Construction and Building Materials, 149, 2017, 315-326, DOI: 10.1016/j.conbuildmat.2017.05.092
- 46. Reiterman P.: Influence of metakaolin additive and nanoparticle surface treatment on the durability of white cement based concrete. European Journal of Environmental and Civil Engineering, 2018, DOI: 10.1080/19648189.2018.1504235
- 47. Kurda R., de Brito J., Silvestre J.D.: Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84, 2017, 198-213, DOI: 10.1016/j.cemconcomp.2017.09.009
- 48. Shon C.S., Abdigaliyev A., Bagitova S., Chung C.W., Kim D.: Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash. Cold Regions Science and Technology, 155, 2018, 127-136, DOI: 10.1016/j.coldregions.2018.08.003
- 49. Glinicki M.A., Jaskulski R., Dąbrowski M.: Design principles and testing of internal frost resistance of concrete for road structures. Roads and Bridges - Drogi i Mosty, 15, 1, 2016, 21-43, DOI: 10.7409/rabdim.016.002
- 50. Reiterman P., Holčapek O., Zobal O., Keppert M.: Freeze-thaw resistance of cement screed with various supplementary cementitious materials. Reviews on advanced materials science, 58, 1, 2019, 66-74, DOI: 10.1515/rams-2019-0006
- 51. Bilek V., Mec P., Zidek L., Moravec T.: Concretes with ternary binders - thinking about frost resistance. Cement, Wapno, Beton, 20, 2015, 72-78
- 52. Ye H., Jin X., Fu C., Jin N., Xu Y., Huang T.: Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation. Construction and Building Materials, 112, 2016, 457-463, DOI: 10.1016/j.conbuildmat.2016.02.194
- 53. Farnam Y., Villani C., Washington T., Spence M., Jain J., Weiss J.W.: Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 de-icing salt. Construction and Building Materials, 111, 2016, 63-71, DOI: 10.1016/j.conbuildmat.2016.02.098
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e2e3c3e-cf0a-45d8-84bd-ff52beb25dd2