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1. INTRODUCTION

Multiobjective variational control models are very prominent amongst constrained
vector optimization models because of their occurrences in a variety of popular con-
texts, notably, industrial process control, impulsive control problems, production and
inventory, epidemic, control of a rocket, control of space structures, and other diverse
fields.

In recent years, there has been significant growth in the application of invexity
theory in multiobjective programming which was originated by Hanson [15] for scalar
optimization problems. Since that time, it has been shown that many results in multi-
objective programming, previously established for convex functions, actually hold for
the wider class of invex functions. After Hanson’s work, other types of differentiable
functions have appeared with the intent of generalizing invex functions from different

c© AGH University of Science and Technology Press, Krakow 2014 665



666 Tadeusz Antczak and Manuel Arana Jiménez

points of view. One such generalization of invexity is the concept of (p, r)-invexity
introduced by Antczak [1] for scalar optimization problems and extended to the vec-
torial case in [2]. In [3], Antczak generalized the definition of (p, r)-invexity and he
introduced the definition of B-(p, r)-invexity for scalar constrained optimization prob-
lems.

The relationship between mathematical programming and classical calculus of
variation was explored and extended by Hanson [14]. Thereafter variational control
programming problems have attracted some attention in the literature. Optimality
conditions and duality for multiobjective variational control problems have been of
much interest in recent years, and several contributions have been made to its de-
velopment (see, for example, [5–9, 13, 16–18, 21, 24, 26], and references here). Bhatia
and Kumar [8] derived duality theorems for multiobjective control problems under
generalized ρ-invexity assumptions. Nahak and Nanda [22] discussed the efficiency
and duality for multiobjective variational control problems with (F, ρ)-convexity. In
[9], Bhatia and Mehra extended the concepts of B-type I and generalized B-type I
functions to the continuous case and they used these concepts to establish sufficient
optimality conditions and duality results for multiobjective variational programming
problems. Xiuhong [24] proved duality relations through a parametric approach to
relate properly efficient solutions of multiobjective control problems under invexity
assumptions. In [12], Gulati et al. established optimality conditions and duality results
for multiobjective control problems involving generalized invex functions. Hachimi
and Aghezzaf [13] obtained several mixed type duality results for multiobjective vari-
ational programming problems under the introduced concept of generalized type I
functions. Nahak and Nanda [23] obtained sufficient optimality criteria and duality
results for multiobjective variational control problems under V -invexity assumptions.
In [16], Khazafi et al. introduced the classes of (B, ρ)-type I functions and general-
ized (B, ρ)-type I functions and derived a series of sufficient optimality conditions
and mixed type duality results for multiobjective control problems. Arana-Jiménez
et al. [5] provided new pseudoinvexity conditions on the involved functionals of a
multiobjective variational problem such that all vector Kuhn-Tucker or Fritz John
points are weakly efficient solutions if and only if these conditions are fulfilled. In [6],
Arana-Jiménez et al. defined the V -KT -pseudoinvex multiobjective control problem
and proved that a V -KT -pseudoinvex multiobjective control problem is character-
ized so that a Kuhn-Tucker point is an efficient solution. Recently, Arana-Jiménez et
al. [7] introduced new classes of pseudoinvex functions and established a necessary
and sufficient condition for duality results in the considered multiobjective control
problem.

In this paper, we extend the definition of B-(p, r)-invexity introduced by Antczak
[3] for differentiable scalar optimization problems to the continuous vectorial case.
We prove sufficient optimality conditions for weakly efficient, efficient and properly
efficient optimal solutions in the considered multiobjective variational control problem
involved B-(p, r)-invex functions with respect to the same function η and, not neces-
sarily, with respect to the same function b. Further, for the considered multiobjective
variational control problem, we define its vector variational control dual problem in the
sense of Mond-Weir. Then, we prove various duality results between the considered
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multiobjective variational control programming problem and its vector variational
control dual problem under assumption that the functions constituting these vector
optimization problems are B-(p, r)-invex.

2. MULTIOBJECTIVE VARIATIONAL CONTROL PROBLEM
AND B-(p, r)-INVEXITY

In this section, we provide some definitions and some results that we shall use in the
sequel. The following convention for equalities and inequalities will be used throughout
the paper.

For any x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T , we define:

(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n,
(ii) x < y if and only if xi < yi for all i = 1, 2, . . . , n,
(iii) x 5 y if and only if xi 5 yi for all i = 1, 2, . . . , n,
(iv) x ≤ y if and only if x 5 y and x 6= y.

Let I = [a, b] be a real interval and let K = {1, 2, . . . , k}, J = {1, 2, . . . ,m}.
In this paper, we assume x(t) is an n-dimensional piecewise smooth function of t,

and
·
x(t) is the derivative of x(t) with respect to t in [a, b].
Denote by C(I,Rn) the space of piecewise smooth functions x : I → Rn with

norm ‖x‖ = ‖x‖∞+ ‖Dx‖∞, where ‖·‖∞ is the uniform norm and the differentiation
operator D is given by

z = Dx⇐⇒ x(t) = x(a) +

t∫

a

z (s) ds,

where x(a) is a given boundary value. Therefore, d
dt ≡ D except at discontinuities.

We consider the following multiobjective variational control problem in which the
state vector x(t) is brought from the specified initial state x(a) = α to some specified
final state x(b) = β in such a way to minimize a given functional. A more precise
mathematical formulation is given in the following multiobjective variational control
problem as follows:

V -Minimize
b∫

a

f
(
t, x(t),

·
x(t)

)
dt

=

( b∫

a

f1
(
t, x(t),

·
x(t)

)
dt, . . . ,

b∫

a

fk
(
t, x (t) ,

·
x(t)

)
dt

)

subject to g
(
t, x(t),

·
x(t)

)
5 0, t ∈ I,

x(a) = α, x (b) = β,

(MVP)
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where f =
(
f1, . . . , fk

)
: I × Rn × Rn → Rk is a k-dimensional function and

each of its components is a continuously differentiable real scalar function and
g : I ×Rn ×Rn → Rm is assumed to be a continuously differentiable m-dimensional
function.

For notational simplicity, we write x(t) and
·
x(t) as x and

·
x, respectively. We

denote the partial derivatives of f1 with respect to t, x and
·
x, respectively, by f1t ,

f1x , f1·x such that f1x =
(
∂f1

∂x1
, . . . , ∂f

1

∂xn

)
and f1·

x
=
(
∂f1

∂
·
x1

, . . . , ∂f
1

∂
·
xn

)
. Similarly, the partial

derivatives of the vector function g can be written, using matrices withm rows instead
of one, respectively.

Let Ω denote the set of all feasible points of (MVP), i.e.

Ω = {x ∈ C(I,Rn) : x(t) verifying the constraints of (MVP) for all t ∈ I} .

Definition 2.1. A solution x ∈ Ω is said to be weakly efficient of (MVP) if there
exists no other x ∈ Ω such that

b∫

a

f
(
t, x(t),

·
x (t)

)
dt <

b∫

a

f

(
t, x (t) ,

·
x(t)

)
dt.

Definition 2.2. A solution x ∈ Ω is said to be efficient of (MVP) if there exists no
other x ∈ Ω such that

b∫

a

f
(
t, x(t),

·
x (t)

)
dt ≤

b∫

a

f

(
t, x (t) ,

·
x(t)

)
dt.

It is known that some efficient solutions present an undesirable property with
respect to the ratio between the marginal profit of an objective function and the loss
of some other. The concept of proper efficiency given by Geoffrion [11] is a slightly re-
stricted definition of efficiency which eliminates efficient points of a certain anomalous
type.

Definition 2.3. A solution x ∈ Ω is said to be properly efficient of (MVP) if there
exists a scalar M > 0 such that, for each i = 1, . . . , p, the following inequality

b∫

a

f i
(
t, x(t),

·
x(t)

)
dt−

b∫

a

f i
(
t, x(t),

·
x(t)

)
dt

5M

( b∫

a

f j
(
t, x(t),

·
x(t)

)
dt−

b∫

a

f j
(
t, x(t),

·
x(t)

)
dt

)

holds for some j, satisfying
∫ b
a
f j(t, x(t),

·
x(t))dt >

∫ b
a
f j(t, x(t),

·
x(t))dt, whenever

x(t) ∈ Ω and
∫ b
a
f i(t, x(t),

·
x(t))dt <

∫ b
a
f i
(
t, x(t),

·
x(t)

)
dt.
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For notational convenience, we use f i(t, x,
·
x) for f i(t, x(t),

·
x(t)), x for x(t) and

·
x

for
·
x(t).
Now, we generalize the definition of a B-(p, r)-invex function introduced by

Antczak [3] for scalar optimization problems to the continuous vectorial case.

Definition 2.4. Let f : I×Rn×Rn → Rk be a continuously differentiable function. If
there exist real numbers p, r, a function η : I×Rn×Rn → Rn with η (t, x(t), x(t)) = 0
at t if x(t) = x(t) and a function bf : C(I,Rn) × C(I,Rn) → Rk, where bfi :
C(I,Rn) × C(I,Rn) → R+\{0}, i = 1, . . . , k, such that, for all x ∈ C(I,Rn) and
i = 1, . . . , k,

1

r
bfi(x, x)

(
e

r

( b∫

a

fi
(
t,x,

·
x
)
dt−

b∫

a

fi(t,x,
·
x)dt

)

− 1

)

= 1

p

b∫

a

[(
epη(t,x,x) − 1

)]T [
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt if p 6= 0, r 6= 0,

1

r
bfi(x, x)

(
e

r

( b∫

a

fi(t,x,
·
x)dt−

b∫

a

fi(t,x,
·
x)dt

)

− 1

)

=
b∫

a

[η (t, x, x)]
T

[
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt if p = 0, r 6= 0,

bfi(x, x)




b∫

a

f i
(
t, x,

·
x
)
dt−

b∫

a

f i
(
t, x,

·
x

)
dt




= 1

p

b∫

a

[(
epη(t,x,x) − 1

)]T [
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt if p 6= 0, r = 0,

bfi(x, x)




b∫

a

f i
(
t, x,

·
x
)
dt−

b∫

a

f i
(
t, x,

·
x

)
dt




=
b∫

a

[η (t, x, x)]
T

[
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt if p = 0, r = 0,

(2.1)

then f is said to be a Bf -(p, r)-invex function with respect to η at x on C(I,Rn).
Further, every function fi, i = 1, . . . , k, satisfying (2.1) is said to be bfi-(p, r)-invex
with respect to η at x on C(I,Rn). If the inequality (2.1) is satisfied at each point
x ∈ C(I,Rn), then fi, i = 1, . . . , k, is said to be bfi-(p, r)-invex with respect to η on
C(I,Rn).



670 Tadeusz Antczak and Manuel Arana Jiménez

Remark 2.5. It should be pointed out that the exponentials appearing in inequalities
(2.1) are understood to be taken componentwise and 1 = (1, 1, . . . , 1) ∈ Rn.
Definition 2.6. If the inequalities (2.1) are strict, then f is said to be a strictly
Bf -(p, r)-invex function with respect to η at x on C(I,Rn) and every function fi,
i = 1, . . . , k, is said to be strictly bfi-(p, r)-invex with respect to η at x on C(I,Rn).

3. OPTIMALITY CONDITIONS

In this section, for the considered multiobjective continuous programming problem
(MVP), we prove the sufficient optimality conditions for weak efficiency, efficiency
and properly efficiency under assumptions that the functions constituting it are
B-(p, r)-invex (with respect to the same function η and with respect to, not nec-
essarily, the same function b).

Theorem 3.1. Let x be a feasible solution in the considered multiobjective continuous
programming problem (MVP). Assume that there exist λ ∈ Rk and a piecewise smooth
function ξ(·) : I → Rm such that the following conditions

λ
T
fx

(
t, x,

·
x

)
+ ξ(t)T gx

(
t, x,

·
x

)

=
d

dt

[
λ
T
f ·
x

(
t, x,

·
x

)
+ ξ(t)T g ·

x

(
t, x,

·
x

)]
, t ∈ I,

(3.1)

ξj(t)

b∫

a

gj
(
t, x,

·
x

)
dt = 0, t ∈ I, j = 1, . . . ,m, (3.2)

λ ≥ 0, λ
T
e = 1, ξ(t) = 0 (3.3)

hold, where e = (1, . . . , 1) ∈ Rk. Further, assume that f is strictly Bf -(p, r)-invex at
x on Ω with respect to η and ξ(t)T g is Bg-(p, r)-invex at x on Ω with respect to η.
Then x is an efficient solution in (MVP).

Proof. Suppose, contrary to the result, that x ∈ Ω is not an efficient solution in
(MVP). Hence, there exists x̃ ∈ Ω such that

b∫

a

f

(
t, x̃,

·
x̃

)
dt ≤

b∫

a

f

(
t, x,

·
x

)
dt. (3.4)

This means that

b∫

a

f i
(
t, x̃,

·
x̃

)
dt 5

b∫

a

f i
(
t, x,

·
x

)
dt, i = 1, . . . , k (3.5)
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and
b∫

a

f i
∗
(
t, x̃,

·
x̃

)
dt <

b∫

a

f i
∗
(
t, x,

·
x

)
dt for some i∗ ∈ K. (3.6)

By assumption, f is strictly Bf -(p, r)-invex at x on Ω with respect to η and ξ(t)T g
is Bg-(p, r)-invex at x on Ω with respect to η. Then, by Definition 2.4, the following
inequalities are satisfied

1

r
bfi(x̃, x)

(
e

r

( b∫

a

fi

(
t,x̃,

·
x̃

)
dt−

b∫

a

fi

(
t,x,

·
x

)
dt

)

− 1

)

>
1

p

b∫

a

[(
epη(t,x̃,x) − 1

)]T [
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt, i = 1, . . . , k,

(3.7)

1

r
bgj (x̃, x)

(
e
r

(
b∫
a

ξj(t)g
j

(
t,x̃,

·
x̃

)
dt−

b∫
a

ξj(t)g
j

(
t,x,

·
x

)
dt

)

− 1

)

= 1

p

b∫

a

[(
epη(t,x̃,x) − 1

)]T
ξj(t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
dt, j = 1, . . . ,m.

(3.8)

Since bfi(x̃, x) > 0, i = 1, . . . , k, combining (3.5), (3.6) and (3.7), we obtain

1

p

b∫

a

[(
epη(t,x̃,x) − 1

)]T [
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt < 0, i ∈ K. (3.9)

Multiplying each inequality (3.9) by λi, where λ =
(
λ1, . . . , λk

)
≥ 0, and then adding

both sides of the obtained inequalities, we get

1

p

k∑

i=1

b∫

a

[(
epη(t,x̃,x) − 1

)]T
λi

[
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt < 0. (3.10)

Taking into account that x̃ ∈ Ω and bgj (x̃, x) > 0, j = 1, . . . ,m, by (3.2) and (3.8), it
follows that

1

p

b∫

a

[(
epη(t,x̃,x) − 1

)]T
ξj(t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
dt 5 0, j = 1, . . . ,m.

(3.11)
Adding both sides of the inequalities above, we get

1

p

m∑

j=1

b∫

a

[(
epη(t,x̃,x) − 1

)]T
ξj(t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
dt 5 0. (3.12)
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By (3.10) and (3.12), it follows that

1

p

k∑

i=1

b∫

a

[(
epη(t,x̃,x) − 1

)]T
λi

[
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]
dt

+
1

p

m∑

j=1

b∫

a

[(
epη(t,x̃,x) − 1

)]T
ξj(t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
dt < 0.

Thus, we obtain the following inequality

1

p

b∫

a

[(
epη(t,x̃,x) − 1

)]T [
λ
T
fx(t, x,

·
x) + ξ(t)T gx(t, x,

·
x)

− d

dt

(
λ
T
f ·
x
(t, x,

·
x)− ξ(t)T g ·

x
(t, x,

·
x)
)]
dt < 0,

contradicting (3.1). Thus, x is an efficient solution in (MVP) and the proof is complete.

In order to prove that x ∈ Ω is a weakly efficient solution in the multiobjective
variational programming problem (MVP), weaker B-(p, r)-invexity hypotheses are
needed.

Theorem 3.2. Let x be a feasible solution in the considered multiobjective continuous
programming problem (MVP). Assume that there exist λ ∈ Rk and a piecewise smooth
function ξ(·) : I → Rr such that the conditions (3.1)–(3.3) are satisfied. Further, as-
sume that f is Bf -(p, r)-invex at x on Ω with respect to η and ξ(t)T g is Bg-(p, r)-invex
at x on Ω with respect to η. Then x is a weakly efficient solution in (MVP).

Proof. The proof of this theorem is similar to the proof of Theorem 3.1.

Theorem 3.3. Assume that all hypotheses of Theorem 3.1 are fulfilled. If λ > 0, then
x a properly efficient solution in (MVP).

Proof. Since all hypotheses of Theorem 3.1 are fulfilled, x is efficient in problem
(MVP).

Now, we prove that x is a properly efficient solution in problem (MVP). Suppose,
contrary to the result, that x is not a properly efficient solution in problem (MVP).
If we assume that p = 2, then we choose

M = (k − 1) max

{
λq

λi
: i, q ∈ P, i 6= q

}
. (3.13)

Then, there exist x̃ ∈ Ω and i ∈ P , such that

b∫

a

f i
(
t, x̃(t),

·
x̃(t)

)
dt <

b∫

a

f i
(
t, x(t),

·
x(t)

)
dt
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and
b∫

a

f i
(
t, x(t),

·
x(t)

)
dt−

b∫

a

f i
(
t, x̃(t),

·
x̃(t)

)
dt

b∫

a

fq
(
t, x̃(t),

·
x̃ (t)

)
dt−

b∫

a

fq
(
t, x (t) ,

·
x(t)

)
dt

> M (3.14)

for each q 6= i such that

b∫

a

fq
(
t, x̃(t),

·
x̃(t)

)
dt >

b∫

a

fq
(
t, x(t),

·
x(t)

)
dt.

Hence, for each q 6= i, (3.13) and (3.14) yield

b∫

a

f i
(
t, x(t),

·
x(t)

)
dt−

b∫

a

f i
(
t, x̃(t),

·
x̃(t)

)
dt

> (k − 1) max
i,q∈P,i6=q

λq

λi




b∫

a

fq
(
t, x̃(t),

·
x̃(t)

)
dt−

b∫

a

fq
(
t, x(t),

·
x(t)

)
dt


 .

(3.15)

Since
∫ b
a
fq
(
t, x̃(t),

·
x̃(t)

)
dt >

∫ b
a
fq
(
t, x(t),

·
x(t)

)
dt, the inequality (3.15) gives

(k − 1) max
i,q∈P,i6=q

λq

λi




b∫

a

fq
(
t, x̃(t),

·
x̃(t)

)
dt−

b∫

a

fq
(
t, x(t),

·
x(t)

)
dt




= (k − 1)
λq

λi




b∫

a

fq
(
t, x̃(t),

·
x̃(t)

)
dt−

b∫

a

fq
(
t, x(t),

·
x(t)

)
dt


 .

(3.16)

Combining (3.15) and (3.16), we get

λi




b∫

a

f i
(
t, x(t),

·
x(t)

)
dt−

b∫

a

f i
(
t, x̃(t),

·
x̃(t)

)
dt




> (k − 1)λq




b∫

a

fq
(
t, x̃(t),

·
x̃(t)

)
dt−

b∫

a

fq
(
t, x(t),

·
x(t)

)
dt


 .
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Summing over q 6= i both sides of the inequalities above, we obtain

λi




b∫

a

f i
(
t, x(t),

·
x(t)

)
dt−

b∫

a

f i
(
t, x̃(t),

·
x̃(t)

)
dt




>
∑

q 6=i
λq




b∫

a

fq
(
t, x̃(t),

·
x̃ (t)

)
dt−

b∫

a

fq
(
t, x (t) ,

·
x(t)

)
dt


 .

Thus, the following inequality

λi

b∫

a

f i
(
t, x (t) ,

·
x(t)

)
dt+

∑

q 6=i
λq

b∫

a

fq
(
t, x(t),

·
x(t)

)
dt

> λi

b∫

a

f i
(
t, x̃ (t) ,

·
x̃(t)

)
dt+

∑

q 6=i
λq

b∫

a

fq
(
t, x̃(t),

·
x̃(t)

)
dt

holds, contradicting the efficiency of x in (MVP). Thus, x is a properly efficient
solution in the considered multiobjective continuous programming problem (MVP)
and the proof is complete.

4. DUALITY

In this section, for the considered multiobjective variational control problem (MVP),
we define its vector variational control dual problem in the sense of Mond-Weir
(MWDP). We prove various duality results between (MVP) and (MWDP) under
suitable B-(p, r)-invex hypotheses.

Consider the following vector variational control dual problem in the sense of
Mond-Weir:

V -Minimize
b∫

a

f
(
t, y(t),

·
y(t)

)
dt

=

( b∫

a

f1
(
t, y(t),

·
y(t)

)
dt, . . . ,

b∫

a

fk
(
t, y (t) ,

·
y(t)

)
dt

)
,

p∑

i=1

λif
i
y

(
t, y(t),

·
y(t)

)
+

m∑

j=1

ξj(t)g
j
y

(
y(t),

·
y(t)

)

=
d

dt

[
p∑

i=1

λif
i
·
y

(
t, y(t),

·
y(t)

)
+

m∑

j=1

ξj(t)g
j
·
y

(
y(t),

·
y(t)

)]
,

subject to
b∫

a

ξj(t)g
j
(
t, y(t),

·
y(t)

)
dt = 0, t ∈ I, j ∈ J,

λ ∈ Rk, λ ≥ 0, ξ(t) ∈ Rm, ξ(t) = 0, y(a) = α , y (b) = β,

(MWDP)
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where f =
(
f1, . . . , fk

)
: I×Rn×Rn → Rk is a k-dimensional function and each of its

components is a continuously differentiable real scalar function and g =
(
g1, . . . , gm

)
:

I × Rn × Rn → Rm is assumed to be a continuously differentiable m-dimensional
function.

Let W denote the set of all feasible solutions in (MWDP), that is, the set

W =
{

(y, λ, ξ) : y(t) ∈ C(I,Rn), λ ∈ Rk, ξ(t) ∈ Rm

verifying the constraints of (MWDP) for all t ∈ I
}

and Y = Ω ∪ prC(I,Rn)W .

Theorem 4.1 (Weak duality). Let x and (y, λ, ξ) be any arbitrary feasible solutions in
(MVP) and (MWDP), respectively. Further, assume that f is strictly Bf -(p, r)-invex
at y on Y with respect to η and ξ(t)T g is Bg-(p, r)-invex at y on Y with respect to η.
Then the following inequality cannot hold:

b∫

a

f
(
t, x(t),

·
x (t)

)
dt ≤

b∫

a

f
(
t, y(t),

·
y(t)

)
dt. (4.1)

Proof. From the feasibility of x in (MVP) and the feasibility of (y, λ, ξ) in problem
(MWDP), it follows that

b∫

a

ξj(t)g
(
t, y(t),

·
y(t)

)
dt = 0, t ∈ I, j = 1, . . . ,m, (4.2)

b∫

a

ξj(t)g
(
t, x(t),

·
x(t)

)
dt 5 0, t ∈ I, j = 1, . . . ,m. (4.3)

By assumption, ξ(t)T g is Bg-(p, r)-invex at y on Y with respect to η. As it follows
from Definition 2.4, bgj (x, y) > 0, j = 1, . . . ,m. Hence, (4.2) and (4.3) yield

1

r
bgj (x, y)

(
e

r

( b∫

a

ξj(t)g
j
(
t,x,

·
x
)
dt−

b∫

a

ξj(t)g
j
(
t,y,

·
y
)
dt

)

− 1

)
5 0. (4.4)

Hence, by Definition 2.4, the inequality (4.4) implies

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T m∑

j=1

ξj (t)

[
gjy

(
t, y,

·
y
)
− d

dt
gj·
y

(
t, y,

·
y
)]
dt 5 0. (4.5)
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By assumption, f is Bf -(p, r)-invex at y on Y with respect to η. Hence, by Defini-
tion 2.4, we have

1
r bfi(x, y)

(
e

r

( b∫

a

fi
(
t,x,

·
x
)
dt−

b∫

a

fi
(
t,y,

·
y
)
dt

)

− 1

)
> 1

p

b∫

a

[(
epη(t,x,y) − 1

)]T

·
[
f iy

(
t, y,

·
y
)
− d

dtf
i
·
y

(
t, y,

·
y
)]
dt, i = 1, . . . , k.

(4.6)

Suppose, contrary to the result, that (4.1) holds. Since bfi(x, y) > 0, i = 1, . . . , k, the
inequalities (4.1) and (4.6) yield

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T [
f iy

(
t, y,

·
y
)
− d

dt
f i·
y

(
t, y,

·
y
)]
dt < 0, i = 1, . . . , k. (4.7)

Multiplying each inequality (4.7) by λi, where λ = (λ1, . . . , λk) ≥ 0, and then adding
both sides of the obtained inequalities, we get

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T k∑

i=1

λi

[
f iy

(
t, y,

·
y
)
− d

dt
f i·
y

(
t, y,

·
y
)]
dt < 0. (4.8)

Adding both sides of inequalities (4.5) and (4.8), we obtain

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T k∑

i=1

λi

[
f iy

(
t, y,

·
y
)
− d

dt
f i·
y

(
t, y,

·
y
)]
dt

+
1

p

b∫

a

[(
epη(t,x,y) − 1

)]T m∑

j=1

ξj(t)

[
gjy

(
t, y,

·
y
)
− d

dt
gj·
y

(
t, y,

·
y
)]
dt < 0.

Hence, the following inequality

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T ( k∑

i=1

λi

[
f iy(t, y,

·
y)− d

dt
f i·
y
(t, y,

·
y)
]

+

m∑

j=1

ξj(t)
[
gjy(t, y,

·
y)− d

dt
gj·
y
(t, y,

·
y)
])
dt < 0,

contradicting the feasibility of (y, λ, ξ) in (MWDP). Thus, the proof is completed.

If we impose weaker hypotheses of Bf -(p, r)-invexity on the objective function,
then the following weaker result is true.
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Theorem 4.2 (Weak duality). Let x and (y, λ, ξ) be any arbitrary feasible solutions
in (MVP) and (MWDP), respectively. Further, assume that f is Bf -(p, r)-invex at y
on Y with respect to η and ξ(t)T g is Bg-(p, r)-invex at y on Y with respect to η. Then
the following inequality cannot hold:

b∫

a

f
(
t, x(t),

·
x (t)

)
dt <

b∫

a

f
(
t, y(t),

·
y(t)

)
dt. (4.9)

In order to prove the strong duality theorem we will invoke the following lemma
due to Chankong and Haimes [10].

Proposition 4.3. A point x(t) ∈ Ω is an efficient solution (a weakly efficient solu-
tion) for (MVP) if and only if, for every i = 1, . . . , k, x(t) solves

Minimize
b∫

a

f i
(
t, x(t),

·
x(t)

)
dt

subject to g
(
t, x(t),

·
x(t)

)
5 0, t ∈ I,

x(a) = α, x (b) = β,
b∫

a

f j
(
t, x(t),

·
x(t)

)
dt 5

b∫

a

f j
(
t, x(t),

·
x(t)

)
dt, j = 1, . . . , k, j 6= i.

(Pi(x))

Theorem 4.4 (Strong duality). Let x ∈ Ω be an efficient solution in (MVP) and,
moreover, a suitable constraint qualification for (Pi(x)) be satisfied. Then there exist
λ ∈ Rk and a piecewise smooth function ξ(·) : I → Rm such that the conditions
(3.1)–(3.3) are satisfied. Further, if all hypotheses of the weak duality theorem are ful-
filled, then

(
x, λ, ξ

)
is an efficient solution (a weakly efficient solution) in (MWDP).

Proof. Since x ∈ Ω is an efficient solution in (MVP), by Proposition 4.3, x solves
(Pi (x)) for every i = 1, . . . , k. Thus, by the necessary optimality conditions for each
problem (Pi (x)), we get that λij = 0 for all j 6= i, and ξi(·) ∈ Rm, ξi(·) = 0 such that,
for i = 1, . . . , k,

f ix

(
t, x,

·
x

)
− d

dtf
i
·
x

(
t, x,

·
x

)
+
∑
j 6=i λ

i

j

[
f jx

(
t, x,

·
x

)
− d

dtf
j
·
x

(
t, x,

·
x

)]

+
∑m
j=1 ξ

i
j(t)

[
gjx

(
t, x,

·
x

)
− d

dtg
j
·
x

(
t, x,

·
x

)]
= 0, t ∈ I,

(4.10)

b∫

a

ξj(t)g
j

(
t, x,

·
x

)
dt = 0, t ∈ I, j = 1, . . . ,m. (4.11)
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Adding both sides of the inequalities (4.10), we get

(
1 + λ12 + . . .+ λ1k

) [
f1x

(
t, x,

·
x

)
− d

dt
f1·
x

(
t, x,

·
x

)]

+
m∑

j=1

ξ1j (t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]

+
(
λ21 + 1 + . . .+ λ2k

) [
f2x

(
t, x,

·
x

)
− d

dt
f2·
x

(
t, x,

·
x

)]

+
m∑

j=1

ξ2j (t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
+ . . .

+
(
λk1 + λk2 + . . .+ 1

) [
fkx

(
t, x,

·
x

)
− d

dt
fk·
x

(
t, x,

·
x

)]

+
m∑

j=1

ξkj (t)

[
gjx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
= 0.

We introduce the following notations: λ1 = 1 + λ12 + . . .+ λ1k, λ2 = λ21 + 1 + . . .+ λ2k,
. . . , λk = λk1 + λk2 + . . .+ 1,

∑m
k=1 ξ

k
j (t) = ξj(t), j ∈ J . Thus, we have

k∑

i=1

λi

[
f ix

(
t, x,

·
x

)
− d

dt
f i·
x

(
t, x,

·
x

)]

+

m∑

j=1

ξj(t)

[
gx

(
t, x,

·
x

)
− d

dt
gj·
x

(
t, x,

·
x

)]
= 0, t ∈ I.

(4.12)

By (4.11) and (4.12), it follows that
(
x, λ, ξ

)
is feasible in the vector variational control

dual problem (MWDP). Hence, the efficiency of
(
x, λ, ξ

)
follows from weak duality –

Theorem 4.1 (the weak efficiency follows from Theorem 4.2).

Theorem 4.5 (Strict converse duality). Let x and
(
y, λ, ξ

)
be feasible solutions in

the vector variational control problems (MVP) and (MWDP), respectively, such that

b∫

a

λif
i

(
t, x,

·
x

)
dt =

b∫

a

λif
i

(
t, y,

·
y

)
dt, i = 1, . . . , k. (4.13)

Further, assume that λ
T
f is strictly Bf -(p, r)-invex at y on Y with respect to η and

ξ(t)T g is Bg-(p, r)-invex at x on Y with respect to η. Then x = y.
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Proof. Suppose, contrary to the result, that x 6= y. By assumption, f is strictly
Bf -(p, r)-invex at y on Y with respect to η and ξ(t)T g is Bg-(p, r)-invex at y on Y
with respect to η. Then, by Definition 2.4, the following inequalities

1

r
bfi(x, y)

(
e

r

(
b∫
a

λif
i

(
t,x,

·
x

)
dt−

b∫

a

λif
i

(
t,y,

·
y

)
dt

)

− 1

)

>
1

p

b∫

a

[(
epη(t,x,y) − 1

)]T
λi

[
f iy

(
t, y,

·
y

)
− d

dt
f i·
y

(
t, y,

·
y

)]
dt,

(4.14)

1

r
bgj (x, y)

(
e

r

(
b∫
a

ξj(t)g
j(t,x,

·
x)dt−

b∫

a

ξj(t)g
j

(
t,y,

·
y

)
dt

)

− 1

)

= 1

p

b∫

a

[(
epη(t,x,y) − 1

)]T m∑

j=1

ξj(t)

[
gjy

(
t, y,

·
y

)
− d

dt
gj·
y

(
t, y,

·
y

)]
dt

(4.15)

hold. Combining (4.13) and (4.14) and then adding both sides of the obtained
inequalities, we get

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T k∑

i=1

λi

[
f iy

(
t, y,

·
y

)
− d

dt
f i·
y

(
t, y,

·
y

)]
dt < 0. (4.16)

By the feasibility of x and
(
y, λ, ξ

)
in the vector variational control problems (MVP)

and (MWDP), respectively, it follows that

1

r
bgj (x, y)

(
e

r

( b∫

a

ξj(t)g
j

(
t,x,

·
x

)
dt−

b∫

a

ξj(t)g
j

(
t,y,

·
y

)
dt

)

− 1

)
5 0. (4.17)

Combining (4.13) and (4.14) and then adding both sides of the obtained inequalities,
we get

1

p

b∫

a

[(
epη(t,x,y) − 1

)]T m∑

j=1

ξj(t)

[
gjy

(
t, y,

·
y

)
− d

dt
gj·
y

(
t, y,

·
y

)]
dt 5 0. (4.18)

By (4.16) and (4.18), it follows that the inequality

1
p

b∫

a

[(
epη(t,x,y) − 1

)]T (∑k
i=1 λi

[
f iy

(
t, y,

·
y

)
− d

dtf
i
·
y

(
t, y,

·
y

)]

+
∑m
j=1 ξj(t)

[
gjy

(
t, y,

·
y

)
− d

dtg
j
·
y

(
t, y,

·
y

)])
dt < 0,

contradicting the feasibility of
(
y, λ, ξ

)
in (MWDP). Thus, the proof completes.
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5. CONCLUSION

In this paper, we have introduced the classes of B-(p, r)-invex functions for a multi-
objective variational control problem. Then, the concept of B-(p, r)-invexity has been
used to derive the sufficient optimality conditions and Mond-Weir duality results
for the considered multiobjective variational control problems. Thus, the optimality
conditions and duality results have been proved for a new class of nonconvex multi-
objective variational control problems.

Some interesting topics for further research remain. It would be of interest to inves-
tigate whether these results are true also for a larger class of nonconvex multiobjective
variational control problems, for instance, nonconvex nondifferentiable multiobjec-
tive variational control problems and nonconvex multiobjective fractional variational
problems. It seems that the techniques employed in this paper can be used in prov-
ing similarly results for the classes of nonconvex multiobjective variational problems
mentioned above. We shall investigate these questions in subsequent papers.
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