PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Foundry Properties of Brahmaputra River Sand and its Prospects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The river system of the Bengal delta encompasses a huge amount of fluvial sand; however, no comprehensive studies were available on using this river sand in foundry industries. Hence, the present research evaluates the foundry properties of trans-boundary Brahmaputra River sand and its prospects for use in foundries. Several laboratory analyses have been performed to elicit the foundry properties using standard methods of foundry analysis, including XRD, XRF, TG-DSC, and FESEM. From the study, the sand contains mainly quartz with small amounts of feldspar, amphibole, chlorite, and mica, and exhibits a subangular to subrounded shape. The sand is dominated by SiO2 (67.81-69.97%) and lesser amounts of other oxides, and it is thermally stable within 1000 °C temperature. The grain fineness number (64-79), mineralogical, chemical, thermal, and foundry properties are suitable for non-ferrous metal casting without distortion. Further, the aluminum and zinc alloy casting with trials demonstrate their potential for use in the foundry industries. The outcomes of this study thus offer valuable information about utilizing Brahmaputra River sand for foundry applications.
Rocznik
Strony
80--90
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
  • Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Mining, Mineralogy and Metallurgy, Joypurhat, Bangladesh
  • Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Mining, Mineralogy and Metallurgy, Joypurhat, Bangladesh
autor
  • Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Mining, Mineralogy and Metallurgy, Joypurhat, Bangladesh
  • Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Mining, Mineralogy and Metallurgy, Joypurhat, Bangladesh
  • Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Mining, Mineralogy and Metallurgy (IMMM), Joypurhat, Bangladesh
  • Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Mining, Mineralogy and Metallurgy (IMMM), Joypurhat, Bangladesh
Bibliografia
  • [1] Carnin, R.L.P., Folgueras, M.V., Luvizão, R.R., Correia, S.L., Cunha, C.J. & Dungan, R.S. (2012). Use of an integrated approach to characterize the physicochemical properties of foundry green sands. Thermochimica Acta. 543, 150-155. https://doi.org/10.1016/j.tca.2012.05.018.
  • [2] Sahoo, P.K., Pattnaik, S. & Sutar, M.K. (2021). Investigation of the foundry properties of the locally available sands for metal casting. Silicon. 13, 3765-3775. https://doi.org/10.1007/s12633-020-00677-x.
  • [3] Olasupo, O.A. & Omotoyinbo, J.A. (2009). Moulding properties of a Nigerian silica-clay mixture for foundry use. Applied Clay Science. 45(4), 244-247. https://doi.org/10.1016/j.clay.2009.05.001.
  • [4] Siddique, R. (2008). Foundry Sand. In: Waste materials and by-products in concrete (pp.381-406). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-74294-4_12.
  • [5] Murthy, I.N. & Rao, J.B. (2016). Investigations on physical and chemical properties of high silica sand, Fe-Cr slag and blast furnace slag for foundry applications. Procedia Environmental Sciences. 35, 583-596. https://doi.org/10.1016/j.proenv.2016.07.045.
  • [6] Nayak, R.K. & Sadarang, J.A. (2022). Study on the suitability of Mahanadi Riverbed sand as an alternative to silica sand for Indian foundry industries. Transactions of the Indian Institute of Metals. 75, 1169-1179. https://doi.org/10.1007/s12666- 021-02472-7.
  • [7] Hussain, M.A.B., Abdullah, A.B. & Abdullah, R.B. (2018). Physical and chemical properties of Perak River sand for greensand casting moulds. In: Öchsner A. (eds) Engineering Applications for New Materials and Technologies (pp. 13-24). Cham: Springer. https://doi.org/10.1007/978-3-319-72697- 7_2.
  • [8] Rahman, M., Dustegir, M. & Karim, R. et al. (2018). Recent sediment flux to the Ganges-Brahmaputra-Meghna delta system. Science of The Total Environment. 643, 1054-1064. https://doi.org/10.1016/j.scitotenv.2018.06.147.
  • [9] ASTM C778. (2021). Standard specification for standard sand. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0778-21.
  • [10] ASTM D854. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0854-14.
  • [11] ASTM D422. (2007). Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0422-63R07E02.
  • [12] ASTM D7348. (2008). Standard test methods for Loss on Ignition (LOI) of solid combustion residues. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D7348-08.
  • [13] IS 1918. (1966). Methods of Physical Tests for Foundry Sands. (Third Reprint 1997). New Delhi: Bureau of Indian Standards.
  • [14] AFS. (2015). Mould and core test handbook. (4th ed.). Illinois: American Foundry Society.
  • [15] Whitney, D.L. & Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist. 95, 185-187. https://doi.org/10.2138/am.2010.3371.
  • [16] Brown, J.R. (2000). Foseco Ferrous Foundryman’s Handbook. Butterworth-Heinemann: Foseco International Ltd.
  • [17] Rao, T.V.R. (2003). Metal Casting: Principles and Practice. New Delhi: New Age International Ltd. [18] Burns, T.A. (1986). The Foseco Foundryman's Handbook: Facts, Figures and Formulae. (9th ed.). Oxford: Pergamon Press.
  • [19] Gyarmati, G., Budavári, I., Fegyverneki, G. & Varga, L. (2021). The effect of sand quality on the bending strength and thermal distortion of chemically bonded sand cores. Heliyon. 7(7), 1-8. https://doi.org/10.1016/j.heliyon.2021.e07624.
  • [20] Jain, P.L. (2009). Principles of Foundry Technology. (5th ed.). New Delhi: Tata McGraw Hill.
  • [21] Anwar, N., Sappinen, T., Jalava, K. & Orkas, J. (2021). Comparative experimental study of sand and binder for flowability and casting mould quality. Advanced Powder Technology, 32(6), 1902-1910. https://doi.org/10.1016/j.apt.2021.03.040.
  • [22] Chen, S., Zhang, J., Xu, K. & Xu, Q. (2020). Thermal decomposition behaviour of foundry sand for cast steel in nitrogen and air atmospheres. Mathematical Problems in Engineering. 1-12. https://doi.org/10.1155/2020/8121276.
  • [23] Berry, L.G., Mason, B. (1985). Mineralogy: Concepts, Descriptions, Determinations. Delhi, India: CBS Publishers & Distributors.
  • [24] de Hoyos-Lopez, M., Perez-Aguilar, N.V. & Hernandez Chavero, J.E. (2017). Imaging of silica sand to evaluate its quality to use it as foundry core sand. International Journal of Metalcasting. 11, 340-346. https://doi.org/10.1007/s40962- 016-0063-1.
  • [25] Warmuzek, M. (2004). Metallographic techniques for aluminum and its alloys. Materials Park, OH: ASM International. 2004, 711-751.
  • [26] Luptáková, N., Benák, M., Haj-Duchová, Ľ. & Pešlová, F. (2011). Microstructure Analysis of Zinc and Zinc Alloys. Machine Modeling and Simulations. 2011, 373-379.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e1b919e-5f79-42ae-89f8-e523c5591f8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.